WARSAW UNIVERSITY OF TECHNOLOGY

DISCIPLINE OF SCIENCE — INFORMATION AND COMMUNICATIONS TECHNOLOGY

FIELD OF SCIENCE — ENGINEERING AND TECHNOLOGY

Ph.D. Thesis

Teofil Sidoruk, M.Sc.

State Space Reductions

for Multi-agent Systems

Supervisor

Prof. Wojciech Penczek, Ph.D., D.Sc.

WARSAW 2023

Acknowledgements

First and foremost, I express my profound gratitude to Prof. Wojciech Penczek, who previously supervised
my M.Sc. thesis and convinced me to take this next step, for giving me the opportunity to do so at the
Institute of Computer Science PAS, for his invaluable guidance and support throughout my Ph.D. studies,
and, above all, for always being incredibly kind, generous, and helpful.

For the past five years, I have have had the privilege of being part of the Theory of Distributed and
Computing Systems group at ICS PAS. T would like to take this opportunity to thank everyone I met
there, starting with Wojtek Jamroga, whose knowledge, the ability to pass it on, and work ethic remain
an unmatched reference point for me. It has been an equal pleasure to work with my other co-authors:
Damian Kurpiewski (who also provided feedback on this thesis), Michal Knapik, f.ukasz Mikulski, and
Fukasz Masko.

I am very grateful to Laure Petrucci, Jaime Arias, and Carlos Olarte from Université Sorbonne Paris
Nord, for the ongoing scientific collaboration, one that I really appreciate and hope to continue in the
future.

For their invaluable help with many aspects of my first scientific publications, I also extend my
gratitude to Artur Niewiadomski and Piotr Switalski from the Siedlce University of Natural Sciences and
Humanities.

Finally, last but certainly not least, I am truly blessed to have my family’s unquestionable support,

for which I will be forever grateful.

Abstract

The Ph.D. thesis “State Space Reductions for Multi-agent Systems”, written under the supervision of
Prof. Wojciech Penczek, discusses several approaches to mitigating the problem of state- and transition-
space explosion, which is a major obstacle in the formal verification of multi-agent systems. Asynchronous
multi-agent systems exacerbate this issue, requiring to account for all possible sequences of agents’ ac-
tions, in any order. At the same time, they are often preferable to synchronous formalisms for modelling
real-world systems, processes, and protocols. This emphasises the need for efficient reduction techniques,
especially when dealing with the verification of strategic abilities of autonomous agents, whose computa-
tional complexity is significantly higher compared to the case of properties concerning just the temporal
evolution of a system.

Chapter 1 recalls the historical background of formal verification techniques, including model check-
ing, and discusses their relevance and necessity in practical applications. The associated issue of state
explosion is introduced, as well as the idea of model reductions.

Chapter 2 introduces the necessary theoretical background, in particular the definitions of Asyn-
chronous Multi-agent Systems (AMAS) and their execution semantics, the syntax and semantics of
Alternating-time Temporal Logic (ATL*), and key notions related to the strategic ability of agents.

Chapter 3 recalls the technique of partial order reduction (POR) as previously defined for Linear Tem-
poral Logic (LTL) and subsequently demonstrates how it can be adapted to sSATL*, a subset of ATL*
that remains significantly more expressive than LTL. The correctness of reductions is proven in various
semantical settings, including both memoryless and perfect recall strategies, subjective strategic ability,
and an epistemic extension of sSATL™. The obtained results are notable both in theory and practice, as
they provide significant model reductions for the new purpose of verifying strategic ability properties at
no additional computational cost, and potentially using existing tools and algorithms designed for LTL.

Chapter 4 defines two specialised techniques, called pattern-based reduction and layer-based reduc-
tion. While applicable to a much smaller class of models than POR, they are able to exploit specific
characteristics of these models, thus yielding additional gains in model reduction. Attack-defence trees
(ADTrees) are introduced and translated to a multi-agent setting (Guarded Update Systems, GUS) in or-
der to provide an example of models exhibiting the desired characteristics, namely a tree synchronisation
topology between components.

Chapter 5 revisits the setting of ADTrees, but looks at model reductions from a different perspective,
aiming to minimise the number of agents in a multi-agent system. To that end, the formalism of AMAS
is extended to represent ADTrees, superseding the previous formulation of GUS which did not include
agents. Representing security scenarios from ADTrees as extended AMAS allows for studying a new
aspect of these models, now considered in the context of two opposing agent coalitions of specific size
and assignment to particular tasks. Therefore, an algorithm synthesising an optimal assignment using a
minimal number of agents is proposed, proved to be correct, and evaluated experimentally.

Chapter 6 concludes the thesis, summarising it and identifying several potential avenues of further

research.

Prior works

The material in this thesis is based on the following papers to which the author of this thesis has

contributed:

[1]

W. Jamroga, W. Penczek, T. Sidoruk, P. Dembinski, and A. Mazurkiewicz, “Towards Partial Order
Reductions for Strategic Ability,” Journal of Artificial Intelligence Research, vol. 68, pp. 817-850, 2020

W. Jamroga, W. Penczek, and T. Sidoruk, “Strategic Abilities of Asynchronous Agents: Semantic Side
Effects and how to tame them,” in Proceedings of KR 2021, 2021, pp. 368-378

D. Kurpiewski, W. Jamroga, ¥.. Masko, t., Mikulski, W. Pazderski, W. Penczek, and T. Sidoruk,
“Verification of Multi-Agent Properties in Electronic Voting: A Case Study,” in Proceedings of AiML
2022. College Publications, 2022, pp. 531-556

J. Arias, C. Budde, W. Penczek, L. Petrucci, T. Sidoruk, and M. Stoelinga, “Hackers vs. Secu-
rity: Attack-Defence Trees as Asynchronous Multi-agent Systems,” in Proceedings of ICFEM 2020.
Springer, 2020, pp. 3-19

L. Petrucci, M. Knapik, W. Penczek, and T. Sidoruk, “Squeezing State Spaces of (Attack-Defence)
Trees,” in Proceedings of ICECCS 2019. 1EEE, 2019, pp. 71-80

J. Arias, L. Petrucci, f.. Masko, W. Penczek, and T. Sidoruk, “Minimal Schedule with Minimal Number
of Agents in Attack-Defence Trees,” in Proceedings of ICECCS 2022. 1EEE, 2022, pp. 1-10

For the details regarding the author’s involvement in specific aspects of the above works, we refer the

reader to the beginning of each chapter of the thesis.

Keywords

multi-agent systems, asynchronous execution, state explosion, partial order reduction, temporal logic,

strategic ability, attack-defence trees, scheduling

Streszczenie

Niniejsza rozprawa doktorska, zatytulowana “State Space Reductions for Multi-agent Systems” i napisana
pod kierunkiem prof. dr hab. inz. Wojciecha Penczka, przedstawia kilka technik ograniczajacych powazny
problem w formalnej weryfikacji systeméw wieloagentowych, jakim jest eksplozja przestrzeni stanow i
tranzycji. Problem ten dotyczy w szczegdélnodci systemow asynchronicznych, w ktérych konieczne jest
uwzglednienie wszystkich mozliwych ciagow akeji agentow w dowolnej kolejnosci. Jednak wlasnie taka se-
mantyka wykonania czesto jest formalizmem lepiej odpowiadajacym potrzebom modelowania i weryfikacji
rzeczywistych systemow, proceséw i protokoléw, ktore sa zwykle, przynajmniej na pewnym poziomie ab-
strakcji, asynchroniczne. Tym bardziej S$wiadczy to, ze efektywne metody redukecji modeli sa w praktyce
niezbedne, zwlaszcza gdy mamy do czynienia z weryfikacja zdolnosci strategicznej autonomicznych agen-
téw, charakteryzujaca sie znaczaco wyzsza ztozonoscia obliczeniows niz w przypadku wilasnosci czysto
temporalnych.

Rozdzial 1 pokrétce przedstawia rys historyczny technik formalnej weryfikacji, w tym weryfikacji
modelowej (ang. model checking) i uzasadnia potrzebe ich praktycznego stosowania. Ponadto omawia
problem eksplozji przestrzeni stanéw i tranzycji i wprowadza zagadnienie redukcji modeli.

Rozdzial 2 zawiera podstawy teoretyczne niezbedne do pdzniejszego zdefiniowania metod redukcji, w
szczegblnosei definicje asynchronicznych systeméw wieloagentowych (AMAS) 1 ich semantyki wykonania,
skladnie i semantyke logiki temporalnej czasu alternujacego (ATL*), oraz kluczowe zagadnienia dotyczace
zdolnodci strategicznej agentéw, takie jak pojecia strategii i jej wyniku.

Rozdzial 3 zaczyna sie od przywolania istniejacej formalizacji redukeji cze$ciowoporzadkowych (POR)
dla logiki temporalnej czasu liniowego (LTL), a nastepnie przedstawia adaptacje tej techniki do sATL*,
podzbioru ATL* o nadal znaczaco wiekszej wyrazalnosci niz LTL. Poprawnos$¢ uzyskanych redukcji
jest udowodniona w réznych wariantach semantycznych, uwzgledniajacych zaréowno strategie z pelna
historia standéw jak i bezpamieciowe, subiektywna definicje zdolnoéci strategicznej, a takze rozszerzenie
sATL™ o operator epistemiczny. Uzyskane wyniki sg istotne zaréwno z teoretycznego, jak i praktycznego
punktu widzenia. Pozwalaja bowiem na uzyskanie znaczacej redukcji modeli w nowym zastosowaniu, tj.
weryfikacji wlasnoéci dotyczacych zdolnosci strategicznej agentéw, nie zwigkszajac przy tym zlozonosci
obliczeniowej algorytmu redukcji w stosunku do LTL. Co wiecej, mozliwe jest wykorzystanie juz istnieja-
cych narzedzi implementujacych algorytmy dla tej ostatniej logiki.

Rozdzial 4 definiuje dwie wyspecjalizowane techniki redukcji w oparciu o wzorce (ang. pattern-based
reduction) oraz o warstwy (ang. layer-based reduction). W odréznieniu od redukcji cze$ciowoporzad-
kowych, mozna je zastosowa¢ dla duzo mniejszej klasy modeli. Pozwala to jednak na wykorzystanie ich
charakterystycznych wtasnosci do uzyskania bardziej efektywnej redukcji niz umozliwiana przez POR.
Jako przyklad modeli o pozadanych wilasnosciach, przede wszystkim z topologia synchronizacji pomiedzy
komponentami bedaca drzewem, zostaja wykorzystane scenariusze bezpieczenstwa reprezentowane jako
w postaci drzew ataku/obrony (ang. attack-defence trees, ADTree) po translacji do formalizmu automa-
towego (ang. guarded update systems, GUS).

Rozdzial 5 powraca do formalizmu ADTree, ale rozpatruje zagadnienie redukcji modeli z innej per-

spektywy, a mianowicie dazac do zmimimalizowania liczby agentéw w systemie wieloagentowym. W tym
celu formalizm AMAS zostaje rozszerzony, aby umozliwi¢ reprezentowanie scenariuszy bezpieczenstwa
z ADTree. W ten sposéb zostaje uogdlniona automatowa reprezentacja w postaci GUS, rozwazana w
poprzednim rozdziale, ktora dotychczas nie brala pod uwage agentow. Translacja z ADTree do AMAS
pozwala na rozwazanie scenariuszy ataku/obrony w nowym kontekscie, uwzgledniajacym liczbe agentéw
w przeciwnych koalicjach oraz ich konkretny przydzial do poszczegdlnych zadan. Zostaje zaproponowany
algorytm optymalnego planowania zadan z wykorzystaniem minimalnej liczby agentow, a jego poprawnos¢
udowodniona i oceniona eksperymentalnie.

Rozdzial 6 stanowi podsumowanie rozprawy doktorskiej oraz wytycza potencjalne kierunki dalszych

badan naukowych.

Istniejace prace

W rozprawie zostaly wykorzystane definicje, przyklady, wyniki teoretyczne i eksperymentalne z nastepu-

jacych prac naukowych z udzialem jej autora:

[1] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembinski, and A. Mazurkiewicz, “Towards Partial Order
Reductions for Strategic Ability,” Journal of Artificial Intelligence Research, vol. 68, pp. 817-850, 2020

[2] W. Jamroga, W. Penczek, and T. Sidoruk, “Strategic Abilities of Asynchronous Agents: Semantic Side
Effects and how to tame them,” in Proceedings of KR 2021, 2021, pp. 368-378

[3] D. Kurpiewski, W. Jamroga, ¥.. Masko, b, Mikulski, W. Pazderski, W. Penczek, and T. Sidoruk,
“Verification of Multi-Agent Properties in Electronic Voting: A Case Study,” in Proceedings of AiML
2022. College Publications, 2022, pp. 531-556

[4] J. Arias, C. Budde, W. Penczek, L. Petrucci, T. Sidoruk, and M. Stoelinga, “Hackers vs. Secu-
rity: Attack-Defence Trees as Asynchronous Multi-agent Systems,” in Proceedings of ICFEM 2020.
Springer, 2020, pp. 3-19

[5] L. Petrucci, M. Knapik, W. Penczek, and T. Sidoruk, “Squeezing State Spaces of (Attack-Defence)
Trees,” in Proceedings of ICECCS 2019. 1EEE, 2019, pp. 71-80

[6] J. Arias, L. Petrucci, ¥.. Masko, W. Penczek, and T. Sidoruk, “Minimal Schedule with Minimal Number
of Agents in Attack-Defence Trees,” in Proceedings of ICECCS 2022. 1EEE, 2022, pp. 1-10

Szczegdlowe informacje dotyczace konkretnego wkladu autora w powyzsze artykuly znajduja sie¢ na

poczatku kazdego rozdzialu niniejszej rozprawy.

Stowa kluczowe

systemy wieloagentowe, asynchroniczna semantyka wykonania, eksplozja przestrzeni stanow, redukcje

cze$ciowoporzadkowe, logika temporalna, zdolnosé strategiczna, drzewa ataku/obrony, planowanie

Contents

1 Introduction

1.1
1.2
1.3
1.4
1.5

Formal verification
Model checking
State explosion
Model reductionso

Thesis statement L e e e e e

2 Preliminaries

21

2.2

2.3

2.4
2.5
2.6

3.1
3.2

3.3

3.4

Asynchronous semantics for strategic ability 0000
2.1.1 Asynchronous Multi-agent System (AMAS)
2.1.2 Interleaved Interpreted Systems (IIS)
Alternating-time Temporal Logic (ATL*)
2.2.1 Strategic ability of agents oo
2.2.2 Taxonomy of strategies
2.2.3 Outcome setso e e
2.2.4 Concurrency fairnesso e
2.2.5 Semantics L
Handling semantic side effects
2.3.1 Deadlocks and finite paths oo
2.3.2 Opponent reactivity
2.3.3 Modelling the extent of agents’ choice
Extending ATL* to epistemic properties.
Relevant subsets of ATL* and ATLK*
SUmMmary e e e e e
2.6.1 Related work

Partial Order Reduction

Introduction L
Preserving equivalences in reduced models oL Lo L.
3.2.1 Stuttering trace equivalence oL oL
3.2.2 Mazurkiewicz traces e e e
The POR algorithm
3.3.1 Heuristics L
Adapting POR for strategic ability
3.4.1 sATL™ with imperfect information
3.4.2 Concurrency-fair sSATL* with imperfect information
3.4.3 sATLK: handling the epistemic operator

13
13
14
15
16
16

19
19
19
20
21
22
22
23
23
24
25
25
26
27
28
28
29
29

3.4.4 POR for subjective strategic ability L. 40

3.4.5 Counterexample for sSATL* with perfect information 41
3.5 Experimental evaluation 41
3.5.1 The model checker SPIN 42
3.5.2 Input language: PROMELA 42
3.5.3 Benchmarks 43
3.5.4 Results e 44
3.6 SUMMATY o e e 46
3.6.1 Related work 47
Specialised Reductions 49
4.1 Imtroduction 49
4.2 Attack-Defence Trees (ADTrees) oo i i it it e e 49
4.3 Guarded Update Systems 51
4.3.1 Asynchronous product of GUSo 52
4.3.2 Synchronisation topology 53
4.4 Translating ADTrees to GUS 53
4.5 Pattern-based reduction Lo 95
4.6 Layer-based reduction oL 55
4.6.1 Properties of tree topologies oo 55
4.6.2 Layered reduction at a singledepth Lo 0. 57
4.6.3 Layered reduction for the entire tree o7
4.7 Experimental evaluation o L 58
4.7.1 Literature case studies 58
4.7.2 Case studies: results L 59
4.7.3 Scalable experiments 61
4.7.4 Scalable ADTrees: results 62
4.8 Comparison with POR 63
4.9 SUMMATY o e e e e e e e 64
4.9.1 Related work e 65
Minimal Agent Scheduling 67
5.1 Imtroduction oL 67
5.2 Representing agents in security scenarios Lo 68
5.2.1 Extending AMAS to represent ADTrees 68
5.2.2 Translation to EAMAS 69
5.3 Minimising number of agents Lo 70
5.3.1 Normalising ADTrees 70
5.3.2 Handling defences and conditional branches 72
5.3.3 Example of preprocessing 73
5.4 Synthesising the minimal assignment o000 74
54.1 Depthofnodes 75
5.4.2 Levelof nodes 75
5.4.3 Bounds on the number of agents o Lo 76
5.4.4 Minimal schedule 76
5.4.5 Uniform assignment for SEQ nodes L. 7
5.4.6 Assigning nodes without duration 78

10

5.4.7 Complexity and correctness 80

5.4.8 Example of scheduling oo 81
5.5 Experimental results Lo 81
5.5.1 Benchmarkso 81
5.6 SUmMmary e e e 84
5.6.1 Related work L 84
Conclusions 87
6.1 SUMMATY e e e 87
6.2 Directions for Future Research 87

11

Chapter 1

Introduction

We live in a time where computer systems, both software and hardware, have become virtually ubiquitous
in nearly all aspects of our daily existence. There is now an entire generation of people who grew up in a
world where pervasive internet access is often taken for granted, and common tasks, from navigation to
financial operations, have been made infinitely more convenient. One curious aspect of this gradual, yet
dramatic, change that has occurred over the last few decades is the way we view instances of incorrect
operation of computer systems and their underlying algorithms, often stemming from undiscovered issues
in their design. It is safe to say, at least in the context of software applications targeting a large consumer
base, that such errors are not only commonplace, but also not at all unexpected by the users. Despite
extensive testing performed by dedicated internal and external quality assurance teams, it seems that no
piece of software, from video games to office suites to operating systems, is immune to “bugs”, as these
issues are often colloquially referred to.

On the other hand, it does not take long to come up with examples of areas and applications where
this state of things is not just undesirable, but outright unacceptable. These include critical systems
involved in e.g. the operation of medical devices, plane navigation, rocket propulsion, spacecraft control,
nuclear power plants, to name a few. When failure means huge financial losses at best, and human
injuries or deaths at worst, it is clear that the usual approach to software quality does not suffice. In
particular, while testing does have its role in the process, and often allows for easily encountering errors
if they are present, it cannot tell anything about their absence. Therefore, for these “mission critical”
systems a different approach is necessary, one that does not aim at finding errors, but rather at proving
or disproving — with all the mathematical rigour it entails — that the system satisfies formally specified

properties. This approach is referred to as formal verification.

1.1 Formal verification

To better motivate the necessity of formal verification in the design of computer systems, it is perhaps
worth recalling a few historical examples where it likely would have prevented significant losses.

In 1996, the Ariane 5 rocket exploded shortly after take-off from the Kourou cosmodrome in French
Guiana, leading to the destruction of $500 million worth of equipment for the European Space Agency.
The cause was eventually identified as an error in the rocket’s internal software, where an exception
occurred due to the conversion of 64-bit floating point numbers to 16-bit signed integers, exceeding the
maximal value of the latter type. Although damaging both financially and in terms of publicity and
perceived reliability for the agency (especially since this was to be the rocket’s maiden flight), the failed
launch nonetheless had a good effect, since it brought the issue to the public attention, emphasising the

need for formal methods in mission-critical software verification, and leading to increased funding for new

13

techniques to achieve that goal.

Today, formal verification encompasses many different techniques, with varying degrees of scalability
and automation. The manual approach involves an expert (or, more likely, a large group of experts) in
the fields of mathematics and logics meticulously creating a mathematical model of the system, and then
constructing a formal proof that the expected properties indeed hold. This is a less than ideal solution
due to its practical feasibility: today’s systems are often several orders of magnitude larger than what
would be possible to tackle this way. Consider, for example, modern CPUs and GPUs, whose transistor
counts are in the billions, or even tens of billions in case of the latter. Even if somehow a proof could be
constructed manually for such large systems, by the time their design was confirmed to be correct, the
products would be long obsolete in the market, defeating the purpose of verification.

Theorem provers allow for automating the process of constructing proofs of correctness to a certain
extent. However, as in the fully manual approach, it still requires the involvement of experts, typically
from the outside. Therefore, while proficient in verification, they may be lacking some essential informa-
tion about the system’s architecture, possibly as a result of miscoordination or misunderstanding with
the engineers and programmers responsible for actual implementation.

Finally, model checking, on which we will focus in this thesis in the context of reduction techniques,
offers a fully automated way of verifying models. In this approach, the manually constructed proof is
replaced with an automated verifier, or model checker, which takes as input the model of the verified
system. Thus, rather than on mathematicians and logicians constructing a proof, i.e. outside experts,
the emphasis is now on creating an abstraction of the system. Naturally, the people who designed it in
the first place, and as such have intimate knowledge about its architecture, are the ideal candidates for
handling this task. This familiarity with the system in turn allows them to choose the components to
include in the representation, and those to abstract away from. For instance, one may wish to ignore the
cryptographic aspect of a data exchange protocol, e.g. if the underlying encryption is a commonly used
standard that has already been formally verified before, thereby reducing the complexity of the problem

and freeing the capacity to model more relevant components to a higher degree of granularity.

1.2 Model checking

The foundations of model checking have been laid in the 1980s, with the seminal works of Clarke and
Emerson [7] and Queille and Sifakis [8]. However, it was Pnueli [9] in the late 1970s who first proposed the
use of temporal logic in computer science, as a means of expressing important properties of systems, such
as invariance, eventuality, or fairness. Previously, temporal reasoning had been squarely in the domain of
philosophy, where it is essential to mention the early work of Lo$, built upon by Prior [10], whose tense
logic can be seen as a direct predecessor to the logics used in formal verification today. Furthermore,
Kamp [11] provided an important contribution with the theorem connecting temporal logic to first order
logic, as well as the introduction of the “until” operator that remains a staple of linear and branching
temporal logics and their various extensions.

Over the next decades, the two main flavours of temporal logic, Linear Temporal Logic (LTL) and
Computation Tree Logic (CTL), have been used in practice to define specifications of real-world software
and hardware systems, successfully verified through model checking algorithms. These include, among
others, integrated circuits [12], communication protocols [13], security systems [14], device drivers [15],
and spacecraft control software [16, 17, 18].

Major subsequent developments on the model checking front include symbolic model checking [19].
By adopting a symbolic representation, based on ordered binary decision diagrams (OBDDs), it allowed
for handling sets of states and transitions, rather than individual, explicitly represented ones. This

dramatically increased, by many orders of magnitude, the size of models that could be realistically

14

tackled with model checking procedures. Furthermore, bounded model checking, proposed by Biere [20],
leverages SAT-solvers to check the satisfiability of a Boolean formula that encodes the negation of the
intended property of the system, plus relevant constrains on the initial states and some number k of
transition steps. In other words, the satisfiability of the formula implies that there is a counterexample
of length k for the original property, otherwise the bound k& may be increased if desired. This approach
may be further augmented by using SMT (Satisfiability Modulo Theories) solvers, whose specification
language allows for first-order logic, avoiding the conversion of high-level constraints to propositional
formulas, and thus leading to much more natural and compact encodings.

As for the logical formalisms, numerous extensions of the linear and branching logics LTL and CTL
have been proposed and studied. These include adaptations to timed systems, both using the discrete as
well as continuous semantics of time, where temporal operators are additionally restricted with intervals
in which they are evaluated. In this thesis, however, we will focus on extensions of temporal logics with
additional modalities: primarily the strategic, but also the epistemic modality, which add an entirely
new layer of reasoning on top of the existing temporal formalisms. In this setting, components of the
system can now be considered as autonomous agents with partial or full knowledge about the state of
the system and possibly also memory of previous actions. The notion of strategic ability, i.e. whether an
agent (or a group of several agents) have a conditional plan, called a strategy, to enforce some temporal
goal, is of particular interest. The most popular temporal-strategic logic is Alternating-time Temporal
Logic (ATL*), proposed by Alur, Henzinger, and Kupferman [21].

Model checking procedures for ATL* allow for extending the applicability of formal verification to
many new areas. With the increasing proliferation of computer systems, algorithms, and protocols in
many aspects of our lives where they have been previously absent, it has become more important than
ever to take into account the human side of computing. The advent of social engineering, popularised by
Kevin Mitnick’s hacking exploits in the 1990s, put the focus on the “weakest link” in the chain of system
security, i.e. the human users. In multi-agent systems, the autonomous components may represent people
and hardware or software components alike, making this setting a perfect formalism for reasoning about
systems where the technical and social aspects intersect. Electronic voting protocols serve as an excellent
example and material for case studies here. In an election, it is equally important to ensure that the
encryption of data and the used exchange protocols meet all required criteria, as it is to preserve the
integrity of the process against potential social-based threats, from the national level down to potential
coercion of individual voters. Furthermore, it may be desirable to provide some means of vote verifiability,
in line with the growing trend to focus on transparency and trustworthiness in computing. ATL* model

checking allows for the verification of relevant properties that combine these two aspects.

1.3 State explosion

However, the practical verification of strategic ability in multi-agent systems remains a major challenge.
The computational complexity of ATL* model checking can be considered manageable compared to
other formalisms combining the strategic modality with temporal reasoning, such as Strategy Logic [22].
Nonetheless, the problem is significantly harder than the verification of purely temporal LTL and CTL
properties. In fact, under certain strategy semantics (namely, for agents with imperfect information
about the global state of the system, but with full recall of their previous actions), it becomes undecidable.

Secondly, ATL* extends temporal logics with the strategic modality, and as such inherits from the
former many aspects of model checking procedures and associated issues. In particular, the state explosion
problem remains a major obstacle, especially when dealing with asynchronous systems, as is the case in
this thesis. Assuming the execution semantics where each component, i.e. agent, can proceed without

synchronising with all others, is often better suited than the synchronous alternative for modelling and

15

verifying real-world systems, from concurrent programs with potential race conditions to man-in-the-
middle attacks in security scenarios, to elections at the level of individual voters, who may cast their
ballots at any time and in any order, possibly having been coerced to pick a particular candidate or
recast. The downside is that asynchronous models include all possible interleavings of transitions, even
those intuitively seen as equivalent and leading to the same global state, just in a different order. As a
result, the state- and transition-space is significantly larger than in comparable synchronous formalisms.

This further exacerbates the issue of practical verification, which in itself is already more complex than
for temporal logics. Consequently, reduction techniques aiming at pruning the models while preserving

all verified properties, become essential.

1.4 Model reductions

For linear and branching time temporal logics, partial order reduction (POR) is the most popular approach
to containing state explosion. It was first defined for LTL and CTL over three decades ago and has
since been implemented in verifiers such as SPIN. Besides the potential gains it offers, i.e. exponential
reduction in best case scenarios, from the practical standpoint, the main strength of this method is that
the full model (potentially too large to be generated, e.g. due to memory requirements) is never created.
Instead, the reduction occurs while generating the global model from its local components. Ideally, this
can be combined with on-the-fly model checking.

The focus on this thesis will be on analogous model reduction techniques for the verification of strategic
abilities of agents, i.e. formulas of ATL* (or, more precisely, a subset of ATL* that lends itself well
to reduction algorithms while remaining expressive enough to specify virtually all practically relevant
properties), in asynchronous systems. First and foremost, we will demonstrate that the existing partial
order reduction scheme for linear time logic LTL not only can be adapted to that new setting including
the strategic modality, but does not incur extra computational costs. This is a notable theoretical result
with major practical ramifications, as it effectively allows for reusing existing implementations of POR,
thus far available for purely temporal properties, in the verification of a more expressive logic, where
autonomous agents can employ strategies to influence the temporal evolution of the system.

Furthermore, we will propose other reduction techniques for asynchronous multi-agent systems, trad-
ing the universal applicability of POR for potentially higher efficiency of obtained reduction, albeit in
a smaller class of models that exhibit certain characteristics. To that end, we will investigate multi-
agent systems translated from attack-defence trees, a popular formalism primarily used for expressing
and studying security scenarios. In this setting, we will propose two specialised reduction techniques that
exploit the particular topology of synchronisation between local components in such models.

Finally, we note that representing attack-defence trees as multi-agent systems in this manner allows
for reasoning about these security scenarios on an entirely new level, i.e. considering agent coalitions of a
particular size and their specific assignments to particular tasks. This leads to looking at model reductions
from a different perspective, namely by minimising the number of agents, and their corresponding local
automata, in the system. We propose and implement an algorithm that tackles this optimisation problem,
synthesising the shortest schedule using the lowest possible number of agents, thereby obtaining a different

type of model reduction in a multi-agent system.

1.5 Thesis statement

We study model reduction techniques for asynchronous multi-agent systems, primarily within the context

of verifying strategic ability properties, but also discuss other approaches that are only applicable to

16

models that exhibit particular characteristics. Therefore, the main thesis can be stated as follows:

Partial order reduction for linear temporal logic can be adapted to the verification of
strategic ability in asynchronous multi-agent systems, and specialised techniques can yield

additional gains, albeit for a smaller class of models.

17

Chapter 2

Preliminaries

The material in Chapter 2 is based on the following papers to which the author of this thesis has

contributed:

[1] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembinski, and A. Mazurkiewicz, “Towards Partial Order
Reductions for Strategic Ability,” Journal of Artificial Intelligence Research, vol. 68, pp. 817-850,
2020

[2] W. Jamroga, W. Penczek, and T. Sidoruk, “Strategic Abilities of Asynchronous Agents: Semantic
Side Effects and how to tame them,” in Proceedings of KR 2021, 2021, pp. 368-378

The author’s involvement in these works includes many definitions referenced in this chapter, and
especially modifications to the formalism of asynchronous multi-agent systems that add auxiliary e-
transitions, redefine protocol functions, and frame the notion of reactive opponents as a fairness-style
optional condition. Note that the main contribution is actually related to partial order reduction for
strategic ability, which is the subject of Chapter 3 and thus will be discussed at the beginning of that
chapter.

2.1 Asynchronous semantics for strategic ability

Introduced by Alur, Henzinger and Kupferman, alternating-time temporal logic [23, 21] has become one of
the main ways of reasoning about the interactions in a multi-agent setting. Thus far, reasoning about the
strategic ability of agents has been typically done in synchronous formalisms, such as that of Concurrent
Game Systems (CGS) [24]. However, this is not always the preferable approach. Many systems are either
inherently asynchronous, or at least certain aspects of the interaction between agents are better modelled
that way.

An asynchronous semantics for strategic ability was introduced in [1]. In this section, we recall that

formal setting, starting with the definition of asynchronous multi-agent systems.

2.1.1 Asynchronous Multi-agent System (AMAS)

An asynchronous multi-agent system is essentially a network of automata, where each agent corresponds

to a single automaton.

Definition 2.1.1 (Asynchronous Multi-agent Systems [25, 1]). An asynchronous multi-agent system
(AMAS) consists of n agents A = {1,...,n}, each associated with a tuple A; = (L;,i;, Evt;, P;,T;),

including:

19

o a set of local states L; = {I},12,...,1"};

e an initial state ¢; € L;;
o a set of events Evt; = {el e?,... el""};

o a local protocol P;: L; — 2FV% which selects the events available at each local state;

a (partial) local transition function T; € L; x Evt; x L;, such that (1;,e,l}) € T; for some I, € L; iff
ee R(lz)

Sets Ewvt; do not need to be disjoint, that is, an event may be shared by two or more agents. By
Evt = |J;c 4 Evt; and L = | J,c 4 Li we denote, respectively, the set of all events and the set of all local
states. Furthermore, for each event e € Evt, the set Agt(e) = {i € A| e € Evt;} has all agents that can

perform event e.

Train1 Controller Train2

Figure 2.1: Example AMAS: Train-Gate-Controller.

Example 2.1.2 (TGC). Let TGC,, be an AMAS consisting of n trains (t1,...,t,) and the controller c.
The trains run on separate circular tracks that jointly pass through a narrow tunnel. Each train can be
waiting for the permission to enter (state W), riding inside the tunnel (T'), or riding somewhere away
of the tunnel (A). The controller switches between green light (state G) and red light (R). Initially, both

trains are waiting and the controller displays Green. Figure 2.1 presents this AMAS for n = 2 trains

(TGCs).

2.1.2 Interleaved Interpreted Systems (IIS)

The execution semantics for AMAS is provided by Interleaved Interpreted Systems. Local (private) events
are asynchronously interleaved, and agents synchronise on shared events, which are jointly executed by

all agents who have them in their protocols.

Definition 2.1.3 (Interleaved Interpreted System [25, 1]). Let PV be a set of propositional variables.
An interleaved interpreted system (IIS), or a model, is an AMAS extended with the following elements:

* a set of global states St € [, L;;
e an initial global state ¢ € St;

e a (partial) global transition function T': St x Evt — St, such that
L) Tilgie) = g5 Vie Agt(e)
T(glae) =92 Zﬁ Z ! . ? . ’
91 =95 Vi e A\Agt(e)

where g% is the i-th local state of gi;

20

e @ valuation function V: St — 2PV .

For state g = (I1,...,1,), we denote the local component of agent i by ¢° = [;. Also, we will sometimes

write g1 — gy instead of T'(gy,e) = go.

Figure 2.2: 1IS for the Train-Gate-Controller AMAS from Example 2.1.2.

Example 2.1.4. Recall the AMAS from example 2.1.2. Let PV = {iny,...,in,} within; € V(g) iffg' = T.
That is, proposition in; denotes that train t; is currently in the tunnel. The state/transition structure of
the IIS (model) for TGCsy is depicted in Figure 2.2.

The basic notion in asynchronous execution is that of a path, which is a sequence of interleaved global
states and events that transition between them. For a number of reasons, we consider only infinite paths.
This choice follows a standard approach inherited from distributed systems, and will be further elaborated

in Section 2.3.

Definition 2.1.5 (Interleaved path). Let M be a model. An interleaved path, hereinafter called simply
a path, is any infinite sequence m = gpepgr€192 --. of interleaving states and events in M, such that

Gi =5 giv1 for every i = 0.

For path 7, we denote its sequence of events by Fvt(r) = egejes .. ., and refer to its i-th global state

as m[i] = g;. Ip(g) denotes the set of all paths starting at global state g in M.

2.2 Alternating-time Temporal Logic (ATL")

Alternating-time Temporal Logic ATL*, proposed by Alur, Henzinger and Kupferman [23, 21], adds a
strategic modality on top of the existing formal machinery from purely temporal logics. In that sense,
it can be seen as a generalisation of CTL*, where instead of the two path quantifiers “there exists a
path" and “for all paths", we now restrict the temporal reasoning to any subset of paths consistent with

a particular strategy of an agent or group of agents.

Definition 2.2.1 (Syntax of ATL*). Let PV be a set of propositional variables and let A be the set of
all agents. The language of ATL* is defined by the following grammar (where p € PV and A S A):

pu=p|opleae| LA,
yi=@ |y [vAv[Xy|vUn,

21

where {A)y stands for “coalition A has a joint strategy to enforce property v”, X for “next”, and U
for “strong until”. The other temporal operators can be obtained as follows: “release” (dual of U) is
defined as v1 Rvy2 = —((—71) U(—72)), “sometime” as Fy = true U+, and “always” as Gy = falseR~.
Moreover, the CTL* operator “for all paths” can be defined as Ay = {)y. Boolean connectives, true

and false are defined as usual.

Example 2.2.2. The following formulas of ATL* specify interesting properties of the TGCy model
depicted in Fxample 2.1.4:

KeYF iny (the controller can let train ty in),
&eyG —iny (the controller can keep t1 out forever),
KeYF (ing A F =ing) (the controller can let t1 through),

=t1, ta)F (in1 v in) (neither train can get in without the help of the controller, even if it collaborates
with the other train).

2.2.1 Strategic ability of agents

Intuitively, the strategic ability of an agent i to achieve a given goal (specified by some temporal formula
@) is the ability of ¢ to enforce property ¢ in the model no matter what the other agents do. The

conditional plan that specifies choices to be taken by 7 in all possible situations is called a strategy.

2.2.2 Taxonomy of strategies

Multiple types of strategies can be defined, depending on factors such as the agents’ memory of actions
and their knowledge about current state of the model. The taxonomy proposed by Schobbens [26]
differentiates between agents with perfect and imperfect information about the global state, as well as
between memoryless agents and those with perfect recall of their actions. Thus, it defines four “canonical”

strategy types.

Definition 2.2.3 (Types of strategies in AMAS [25, 1]). By Y € {ir,Ir,iR,IR} we denote the types of
strategies in AMAS, which are defined as follows:

o ir (imperfect information, imperfect recall). Formally, an ir-strategy for agent i is a function
o;: Li = Evt; such that o;(1) € P;(l) for each local state l € L;.

o Ir (perfect information, imperfect recall). Formally, an Ir-strategy for agent i is a function o;: St —
Ewt; such that o;(g) € P;i(g%) for each global state g € St.

e iR (imperfect information, perfect recall). Formally, an iR-strategy for agent i is a function
o;: LY — Evt; such that o;(h') € Pi(last(h?)), where last(h') denotes the last state of the his-
tory h.

o IR (perfect information, perfect recall). Formally, an IR-strategy for agent i is a function o;: StT —
Evt; such that o;(h) € P;(last(h)), where last(h') denotes the last state of the history h'.

We will sometimes use ¥ to denote the set of all strategies of type Y. The notion of strategic ability
is naturally generalised to groups of agents working together to achieve a common goal. Thus, a joint
Y -strategy of a coalition A c A is simply a tuple of Y-strategies o;, one for each agent i € A.

In the following, we will be considering strategies of types ir and iR. The reason for this restriction
to imperfect information is simple: the focus of this thesis is on state space reduction methods, and in
particular on partial order reduction. As will be shown in Chapter 3, that approach is not applicable in

the perfect information setting.

22

2.2.3 Outcome sets

Each strategy o considered in some model M is associated with its outcome set, that is, the set of all
paths in M that are consistent with the strategy. In other words, the outcome set contains all paths
that may occur when coalition agents follow their strategy, while the others freely choose events from
their protocols.

We first give an auxiliary definition of an enabled event.

Definition 2.2.4 (Enabled event [25, 1]). Let A = (1,...,m), g € St, e,¢’ € Evt, and let €4 =
(e1,...,em) be a tuple of events such that every e; € Pi(g'). That is, every e; can be selected by its
respective agent i atl state g.

Event e € Evt is enabled at g € St if g = ¢ for some ¢' € St, i.e., T(g,e) = ¢'.

Event ¢’ € Evt is enabled by €4 at g € St iff

o for every i € Agt(e’) n A, we have that ¢’ = e;, and
o for everyie Agt(e)\A, we have that ¢’ € P;i(g").

Thus, €' is enabled by € 4 if all the agents that “own” €’ can choose €' for execution, even when
© a has been selected by the coalition A. We denote the set of events enabled at global state g (respec-
tively, enabled at g by a tuple € 4) by enabled(g) (respectively, enabled(g, € 4)). Clearly, we have that

enabled(g, € 4) S enabled(g).
Now, we can formally define the notion of an outcome of a strategy as follows.

Definition 2.2.5 ((Standard) outcome [2]). Let A € A and Y € {ir,iR}. The (standard) outcome of
strategy o4 € XY in state g of model M is the set out5td(g,04) € Ty (g) such that m = goeggrer -+ €
out34(g,04) iff go = g, and for each m = 0 we have that e,, € enabledns(gm,Ta(gm))-

Note that the set defined above is referred to as a standard outcome, as opposed to its subsets con-
taining only paths that meet certain additional criteria. These restrictions include concurrency fairness

and related conditions, such as opponent reactivity, which will be discussed in subsequent sections.

2.2.4 Concurrency fairness

Wherever concurrency is considered, it is often desirable to ensure that the execution of the system is a
fair one. For example, the scheduler of an operating system typically does not continuously grant I/O
requests to a single process or thread ahead of others, as it would lead to starvation. Similarly, in the
context of strategic ability in AMAS, one may wish to exclude paths where some agent’s choices (i.e.,
their enabled events) are consistently ignored in favor of another’s.

In order to give the definitions concurrency-fair paths and strategy outcomes, one must first formalise

the notions of invisibility and independence of events.

Definition 2.2.6 (Invisible events [1]). Let M be a model, A € A a subset of agents, and PV € PV a
subset of propositions. An event e € Evt is invisible w.r.t. agents A and propositions PV if Agent(e)nA =
& and for each two global states g,g' € St we have that g 5 ¢ implies V(g) n PV =V (¢') n PV.

The set of all invisible events for A, PV is denoted by Invisa py, and its closure, i.e., the set of visible

events, by Visa py = Evi\Invisa py.

Definition 2.2.7 (Independent events [1]). Let e,e’ € Fvt. Events e, € are weakly independent if they
satisfy the relation WI S Evt x Evt, defined as: WI = {(e,€’) € Evt x Evt | Agent(e) n Agent(e') = &}.

Events e, €' are strongly independent, or simply independent, if they satisfy the relation Ia py S Evt x
Evt, defined as: Iapy = WI \ (Visapy x Visapv).

23

Events e, ¢ are called dependent if (e,e’) ¢ I4 py. Note that this applies to visible events regardless
of whether they are weakly independent.

Definitions 2.2.6 and 2.2.7 will be recalled in Chapter 3, as the concepts of invisible and independent
events are essential in obtaining model reductions by determining which states and transitions can be
safely pruned from the model. Now, they allow for defining concurrency fairness in the context of paths

and outcomes.

Definition 2.2.8 (Concurrency-fair path [1]). Let M be a model. A path m € Iy (g) satisfies the
concurrency-fairness condition (CF) if there is no event enabled in all states of © from =[i] on, and at

the same time weakly independent from all the events actually executed in w[i],x[i + 1], 7[i +2],....

We denote the set of all concurrency-fair paths starting at global state g of M by 1531 (g).
The concurrency-fair outcome of a strategy is then defined as a subset of the standard outcome,

restricted only to concurrency-fair paths.

Definition 2.2.9 (Concurrency-fair outcome [1]). Let A € A and Y € {ir,iR}. The concurrency-fair
outcome (CF-outcome) of strategy o4 € XY is defined as outh?™ (g, 04) = out3i4 (g, o4) N 152" (g).

2.2.5 Semantics

With the above definition of outcome, asynchronous semantics for strategic ability in AMAS can be
formally established. We parameterise the satisfaction relation = with subscript ¥ denoting the strategy
semantics, and the superscript Z, denoting the type of outcome sets. Furthermore, we will be using the
parameters Y and Z also with logical formalisms whenever a particular semantics of strategic ability

and specific types of outcome sets are considered. For instance, ATL*itd denotes the logic ATL* with

Std

memoryless, imperfect information strategies and standard outcome sets, and =3¢ is the satisfaction

relation in this semantical setting. Note that Y and Z may be omitted if a statement is universally

applicable to all considered semantics.

Definition 2.2.10 (Asynchronous semantics of ATL* [1]). Let Y € {ir,iR} and Z € {Std, Fair}. The
asynchronous semantics of ATL*, for strategies of type Y, is defined by the following clauses.

M.g=¢p iff peV(g), forpe PV;
M |:Z_| ZﬁM H:Z .
ag Y 90 79 y%
Mag ':}Z/ ©1 N P2 ZﬁMmg 'ZXZ’ P1 and Mvg ':1Z/ Y2y

M, g =5 KA)y iff there is a strategy oa € X such that outr(g,04) # & and, for each path w €
OUtJ\Z/I(gaO'A), we have M, |=€, v

M, 7w =¢ ¢ iff M,7[0] = o

M7 =4 =y iff Mo Hg s

M7 l=¢ oAy iff Mom =g o and M, =y

M7 =8 Xy iff M, afl,o0] FZ s

M, 7 =2 v Uy iff M, w[i,0] EZ ~2 for somei >0 and M, x[j, 0] |EZ v1 for all 0 < j < i.

The clause { Ay represents the notion of objective strategic ability, in the sense that one, “objective”
starting point g is assumed, and it suffices for the formula v to be satisfied on all outcome paths from

that initial state g. However, this is not the only way of defining strategic ability, and in fact, another

24

variant is often adopted instead. Intuitively, subjective strategic ability requires the strategy of coalition
A to succeed (that is, v to be satisfied) not just on all outcome paths starting from g, but also from all

states that A might consider as possible “subjective” starting points [27]. Formally:

Definition 2.2.11 (Subjective semantics for strategic ability in ATL* [3]). Let Y € {ir,iR} and Z €
{Std, Fair}. The subjective semantics of the strategic modality in ATL*, for strategies of type Y, and

Z-outcomes, is defined by the following clause.

M, g SEZ LAYy iff there is a strategy o4 € XY such that, for each path w € |J;c 4 U
we have M, 7 =% .

g'~ig OUt%/I(g/a UA);

We refer the interested reader to [27] for an in-depth discussion and comparison of different variants

of strategic ability.

2.3 Handling semantic side effects

As noted before, execution semantics for AMAS provided by IIS only allows infinite paths. This is
consistent with the typical approaches in the theory of distributed systems, dating back to asynchronous,
parallel automata nets (APA nets) [28] in the early 1980s, as well as models based on process algebras [29,
30, 31, 32]. Furthermore, in keeping with this legacy, the clause for strategic modality in Definition 2.2.10
disregards strategies with empty outcome sets.

However, there are some caveats. At a high level, they ultimately stem from the addition of strategic
reasoning on top of existing representation inherited from distributed systems. Strategic ability is, in some
aspects, fundamentally different from purely temporal properties. As opposed to concurrent processes
that lack agency, agents in AMAS are proactive in the sense that they are, in principle, able to select any
available strategy. In particular, this includes events that deliberately miscoordinate with other agents,
leading to a deadlock, and thus block the execution of the system altogether. While consistent with the
notion of agency in strategic play, it is clearly at odds with the aforementioned approaches to concurrency.

On the other hand, modelling many real-world scenarios requires also reactive agents that should
always, or at least in some instances, defer to the choice of another. For example, in the model of an
electronic voting protocol, such as SELENE [3], voters are clearly proactive and able to pick their preferred
candidate, while the ballot machine simply accepts their choices. In its current form, AMAS semantics
does not address this duality, which can lead to counterintuitive, if not downright paradoxical results,
such as the ballot machine having a strategy to force a vote for a particular candidate simply by virtue
of refusing to accept any other ballot.

These issues motivate several changes to the AMAS execution semantics, discussed in the rest of this

section.

2.3.1 Deadlocks and finite paths

First, we consider the issue of finite paths. In order to retain deadlocked executions while keeping existing
formalisms defined for infinite paths only, we introduce special “silent” transitions, denoted by e. More
precisely, we define an undeadlocked IIS, where the set of all events Fvt is augmented with e. This
additional event, which does not belong to any particular agent, is added as a loop to each global state

where there exists a combination of agents’ choices that blocks the system. Formally:

Definition 2.3.1 (Undeadlocked IIS [2]). Let S be an AMAS, and assume that no agent in S has € in its
alphabet of events. The undeadlocked model of S, denoted M¢ = IIS°(S), extends the model M = IIS(S)

as follows:

25

o Eutpye = Evtyr v {e}, where Agt(e) = &;

o For each g € St, we add a loop g = g iff there is a selection of agents’ choices @4 = (e1,...,ex),

e; € Pi(g), such that enabledp(g, € 4) = &. In that case, we also fix enabledpre(g, € 4) = {€}.

Paths are defined as previously in Definition 2.1.5. The following property is trivially obtained from
the definition of undeadlocked IIS.

Proposition 2.3.2. For any AMAS S, any global state g € IIS(S), and any strategy o4, we have that
enabledrse(sy(9,04(9)) # .

2.3.2 Opponent reactivity

Clearly, coalition agents should always follow their joint strategy, which — recall from Section 2.2.2 — is
simply a tuple consisting of one strategy per agent in the coalition, with no further restrictions. Thus,
in particular, the joint strategy in question may be a miscoordinated one, where two or more agents
disagree on how to proceed in some global state. Adding e loops in undeadlocked IIS addresses the issue
of deadlocks and resulting finite paths not being considered in outcome sets of strategies. However, this
raises another relevant dilemma, namely, whether or not the opponents (i.e., agents outside the coalition)
should also be able to specifically pick events that lead to deadlocks.

At first glance, preventing opposing agents from making certain choices might appear as an artificial,
unnecessary restriction. However, giving them complete freedom of choice has a major downside. In
many cases, it precludes the verification of relevant strategic formulas, in particular reachability goals,
due to the fact there is usually some combination of opponents’ actions that blocks further execution,
often early on. Practically, this limits the specification to simple safety properties.

On the other hand, there may be situations in which it is desirable to model the behavior of opposing
agents in this manner. For instance, one can imagine some attack-defence scenario in which a blocking
the system from further execution is effectively a success for the defenders. However, clearly this does
not apply to all AMAS, going against our intuition of the modelled reality in many cases.

Proposed in [2], the notion of opponent reactivity (RO) allows the modeller to explicitly make an
assumption about how opposing agents should behave in the system. In that sense, it is clearly an
analogous condition to concurrency fairness (cf. Section 2.2.4). Adopting RO means restricting outcome
sets to paths where opponents are “reactive”, i.e. they do not actively choose events that lead to a
deadlock. In other words, rather than block the execution, they have to proceed whenever they have
the option to do so. Rejecting RO, on the other hand, means “proactive” agents that can freely choose

events in accordance with their protocols. The notions is formalised as follows:

Definition 2.3.3 (Opponent-reactive path [2]). Let M€ be an undeadlocked model, and m = goepgies - - .
a path in M€¢. w is opponent-reactive for strategy o4 iff we have that for all m = 0, e, = € implies
enabled(gn,04(gn)) = {e}. We denote the set of all such paths starting at global state g of M€ by
I35 (9).

Analogously to the case for CF, the opponent-reactive outcome is a restriction of the standard one to

its opponent-reactive paths.

Definition 2.3.4 (Opponent-reactive outcome [2]). Let M€ be an undeadlocked model, A < A and
Y € {ir,iR}. The opponent-reactive outcome (RO-outcome) of strategy o € XY in global state g of M€,

is defined as outRat (g, 04) = out3id (g, o4) N IR (g).

The satisfaction relations =% and SEZ for the objective and subjective semantics of strategic abil-
ity, respectively, are denoted by fixing Z = React when assuming the opponent reactivity condition,

analogously to the case of standard and concurrency-fair outcomes (see Definitions 2.2.10 and 2.2.11).

26

2.3.3 Modelling the extent of agents’ choice

The opponent reactivity condition offers a convenient way of adjusting how agents outside the coalition
should act, depending on a particular model and in accordance with our intuition behind it. However,
there remains one outstanding issue it does not address, also related to this choice between proactive and
reactive behavior. Clearly, regardless of the considered coalition and the specified properties to verify, in
a particular model some agents should always be proactive (e.g. a voter casting a ballot for a candidate of
their choice), while some should always be reactive (e.g. the ballot machine acknowledging and counting
the vote, but not being able to affect the choice). In order to allow for modelling this duality, another

change to the AMAS execution semantics was proposed in [2].

Definition 2.3.5 (AMAS with explicit control [2]). Let S be an AMAS defined as in Definition 2.1.1. To
allow for explicit specification of proactive and reactive agents in S, we redefine their protocol functions
as P;: L; — 22Emi\{®}\{®}. Accordingly, we assume that T;(1, e) is defined iff e € |J P;(1).!

That is, rather than individual events, P;(l) now lists (nonempty) subsets of events X1, Xs, -+ € Evt;,
each capturing a choice available for agent ¢ at its local state [. If the agent chooses X; = {eq,e2,...},
then only an event in that subset can be executed within that local component of the AMAS. However,
the agent has no firmer control over which one will be fired.

The previous formulation of AMAS in Definition 2.1.1 (i.e., without explicit control) can now be
considered a special case of the above definition, where P; (1) is always a list of singletons. Thus, whenever
we refer to an AMAS in the remainder of this thesis, Definition 2.3.5 is assumed unless specifically
stated. In particular, note that adopting AMAS with explicit control does not require any changes in the
definitions of IIS and undeadlocked IIS, because the protocols are not actually used to obtain the global
states and transitions of the generated model.

Strategies still assign choices to local states. = Hence, compared to Definition 2.2.3 the range of
functions o; is changed from Evt; to 2Ev%\{g}.

Definition 2.3.6 (Strategies in AMAS with explicit control [2]). To match the redefined protocols in
AMAS with explicit control, the type of agent i’s strategies is changed as follows:

o (ir) o;: L; — 2BVt\{}, such that o;(1) € P;(l) for each | € L;.

o (Ir) o;: St — 2EVE\{F}, such that o;(g) € P;(g°) for each g € St.
o (iR) 0i: L — 2Bvt\{@}, such that o;(h') € P;(last(h?)).

o (IR) oy: St — 2B8\{@F}, such that o;(h) € P;(last(h)).

Accordingly, we lift the set of events enabled by @4 = (e1,...,em,) at g to match the new types of

protocols and strategies.

Definition 2.3.7 (Enabled events in AMAS with explicit control [2]). Event e’ € Evt is enabled by € 4
at g € St iff

o for every i € Agt(e') n A, we have that €' € e;, and
o for every i€ Agt(e')\A, we have that ¢’ € | Pi(g").

With the above changes in the definitions of strategies and enabled events, the outcome, CF-outcome,
and RO-outcome of o4 in M, g of an AMAS with explicit control are given as in Definitions 2.2.5, 2.2.9,
and 2.3.4, respectively.

1For a set of sets X, we use | J X to denote its “fattening” | J, . v -

27

2.4 Extending ATL" to epistemic properties

A number of extensions have been proposed and investigated for ATL*, including a multi-valued variant
[33], as well as formalisms augmented with representations of time [34] and knowledge [35, 3], to name a
few. In this section, we focus on the latter, i.e., an epistemic extension of ATL*, denoted by ATLK*.

In order to introduce knowledge operators K; and define semantics for the epistemic modality, we
first need to define the notion of global states indistinguishable for an agent or a group of agents. It is

captured by the following relations:

Definition 2.4.1 (Indistinguishable states [35, 3]). Let S be an AMAS. For each i € A, the relation
~i={(g,9") € St x St | g* = ¢"*} denotes that states g,g" are indistinguishable for agent i.

The relation ~;=(;.;
By ATLK®, we denote the extension of ATL* with knowledge operators K;, defined below.

~; extends this notion to a group of agents J < A.

Definition 2.4.2 (Syntax of ATLK*). Let PV be a set of propositional variables and let A be the set
of all agents. The language of ATLK* is defined by the following grammar (where p € PV and A € A):

pu=p| =l ap| LA,
yi=@ |y v Ay | Xy [vUy | Kiv,
Yu=pl oAy] K,

where K; stands for “agent i knows that ”, and the other operators are defined as previously for
ATL* in Definition 2.2.1. Note that with the above syntax, temporal and strategic operators cannot be
nested inside 1, i.e., within the epistemic modality.

The semantics of K; is formally defined as follows:

Definition 2.4.3 (Semantics of the epistemic modality in ATLK* [36, 37]). The semantics of the
epistemic modality in ATLK™® is defined by the following clause.

M,gl=y Kiv iff M,¢' =y ¢ for every ¢’ € St such that ¢’ ~; g.
The remaining operators retain the same semantics as in the case for ATL*, see Definition 2.2.10.

Typically, the clause for the epistemic modality refers to every state that is reachable from the initial
global state of the model (or from any initial state, if multiple ones are defined). Here, this requirement
is redundant, as by definition of the transition function in IIS, only reachable states can appear in the

model.

2.5 Relevant subsets of ATL* and ATLK*

In the rest of this thesis, rather than on full ATL*, we will focus on its subset with two important
restrictions. Firstly, we do not consider formulas with nested strategic modalities. Furthermore, in
order to apply partial order reduction (discussed in the next chapter), we also do not use the next step
operator X . This subset is denoted by sATL*, which stands for “simple ATL*”. Analogously, sATLK™
is the corresponding subset of ATLK*. While coming at a cost of reduced expressive power of the
language, these restrictions still allow for specifying the vast majority of practically relevant properties.
In particular, the ability of an agent to endow others with another ability, or deprive them of it, i.e., the
types of properties that require nested strategic modalities to express, are rarely of practical interest [1].
Instead, one typically wants to verify whether an agent or coalition have a strategy to reach a winning
state (e.g. {AYF win), or to always avoid a losing one (e.g. {ADG —lose), both of which are expressible
in sSATL*.

28

2.6 Summary

In this chapter, we have presented Asynchronous Multi-agent Systems (AMAS), the main formalism
that will be considered throughout the rest of this thesis in the context of various techniques for state
space reduction. Its execution semantics is provided by Interleaved Interpreted Systems (IIS), with
interleaving of private events of local automata, and synchronisation on ones shared by two or more
agents. Furthermore, we have introduced the syntax and semantics of strategic-temporal logic ATL* (and
its subset sSATL™), including their epistemic extensions, which are used to specify relevant properties of
AMAS models to be verified by model checking. Because the strategic modality introduces certain nuances
not present when considering purely temporal properties, we have also discussed slight modifications to the
AMAS formalism, which achieve two goals. Firstly, with minimal changes to the existing formulation, they
allow for properly conveying the inherent difference between two types of autonomous agents: proactive
ones, who have the initiative and authority to make choices in particular situations, and reactive ones,
who wait for the choices of others and defer to them. Secondly, this updated semantics for AMAS remains

compatible with the partial order reduction technique, which will be discussed in Chapter 3.

2.6.1 Related work

Asynchronous Multi-agent Systems have been introduced in [25, 1], with semantical issues involving the
strategic modality and proposed changes to avoid them extensively discussed in [2]. An application
of AMAS to the modelling of a real world voting protocol SELENE [3] provides an excellent practical
example.

Of course, it should be noted that the asynchronous approach is certainly not new in the theory of
concurrent systems. It dates back at least to the early 1980s, with AMAS having been inspired by model
such as Asynchronous Parallel Automata Nets (APA Nets), proposed by Priese [28]. However, there is
a major difference in the strategic aspect between their approaches. Unlike AMAS, where autonomous
agents able to freely choose their strategies are considered, APA Nets were never meant to model proac-
tive agents and their strategic ability, but rather a set of reactive components that eventually converge
on some joint behaviour. This also applies to formalisms based on process algebras, including Commu-
nicating Sequential Processes (CSP) [29], Calculus of Communicating Systems (CCS) [30], Algebra of
Communicating Processes (ACP) [31], and 7-calculus [32].

29

Chapter 3

Partial Order Reduction

The material in Chapter 3 is based on the following papers to which the author of this thesis has

contributed:

[1] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembinski, and A. Mazurkiewicz, “Towards Partial Order
Reductions for Strategic Ability,” Journal of Artificial Intelligence Research, vol. 68, pp. 817-850,
2020

[2] W. Jamroga, W. Penczek, and T. Sidoruk, “Strategic Abilities of Asynchronous Agents: Semantic
Side Effects and how to tame them,” in Proceedings of KR 2021, 2021, pp. 368-378

[3] D. Kurpiewski, W. Jamroga, L.. Masko, L., Mikulski, W. Pazderski, W. Penczek, and T. Sidoruk,
“Verification of Multi-Agent Properties in Electronic Voting: A Case Study,” in Proceedings of
AiML 2022. College Publications, 2022, pp. 531-556

The author’s involvement in these works includes the formal results regarding partial order reduction
(POR) recalled in this chapter, in particular the proof of correctness of POR for sATL* in [1], the proof
that POR remains applicable under modified AMAS execution semantics with e-transitions in [2], and
the proofs that POR can be applied to the epistemic extension of sSATL* and the subjective semantics of
strategic ability in [3]. The thesis adds new, previously unpublished results for POR with perfect recall
strategies; only the memoryless semantics was considered in [1, 2, 3]. Additionally, for the paper [1] the
author implemented all benchmarks in the PROMELA modelling language and conducted the experimental
evaluation of reduction efficiency using the SPIN verifier. Here, the selection of models from [1] has been
extended with Faulty TGC.

3.1 Introduction

The explosion of state and transition space is a major challenge in model checking. Asynchronous
formalisms like AMAS particularly exacerbate this issue, due to the fact models have to include all
possible interleavings of events executed by agents. As a result, the number of states and transitions
in the IIS increases exponentially with the number of agents in the AMAS, quickly reaching into the
millions and even billions for non-trivial, yet still relatively small examples.

Clearly, the inclusion of all orderings of events is problematic; furthermore, in many models, one can
often intuitively realise that it should be sufficient to include just some of them while still preserving all
relevant properties of interest and without any loss of generality. For instance, consider the case of an
electronic voting protocol like SELENE [3]. Suppose there are n voter agents, who can choose one of k

candidates. Assuming that each agent’s participation in the election is represented as a private event

31

of its local automaton in the AMAS, the resulting IIS will include multiple paths where the end result
is exactly the same (i.e., all candidates received exactly the same number of votes by exactly the same
voters), except the ballots have been cast in a different order. From the perspective of verifying an actual
voting protocol and its relevant properties, like coercion resistance [38], voter verifiability [39] or receipt
freeness [39], it certainly does not matter what the voting order is. More precisely, the formulas specifying
these properties do not include the next step operator X, essentially rendering all paths that differ only
in the order of votes cast equivalent when verifying these properties.

In this section, we formally define this notion of equivalence and introduce the partial order reductions

(POR) algorithm based upon it. We begin with the definition of a reduced model, also called a submodel.

Definition 3.1.1 (Submodel). Let M, M’ be models. M’ is a reduced model (or submodel) of M,
denoted M' <€ M, if M and M' extend the same AMAS, and we have that St' < St, 1 € St', T is an

extension of T', and V' = V|gp.

3.2 Preserving equivalences in reduced models

Historically, partial order reductions for branching time temporal logic CTL* (as well as its subsets and
epistemic variants, such as CTLK) have been defined using stuttering bisimulation [40, 35]. For linear
time logic LTL, the construction was instead based upon stuttering trace equivalence [41], and, under
the concurrency-fair semantics (cf. Section 2.2.4), on Mazurkiewicz traces [42, 43]. Recall that for all of
these logics, as already indicated for sSATL* in the previous section, the next step operator X has to
be omitted from the syntax in order to obtain a valid reduction. Otherwise, any formula containing X
would be able to distinguish between equivalent paths.

The aforementioned notions of equivalence are not equally discriminative, which directly impacts the
practical effectiveness of obtained reduction, i.e., how many paths can be eliminated from the reduced
model while preserving satisfaction for all formulas of a given logic. In particular, since CTL* is a
superset of LTL, its higher expressivity requires equivalences to be more discriminative than those for
LTL. This produces more equivalence classes and in turn preserves more representative paths in the
reduced model, resulting in smaller reduction.

Clearly, this means that partial order reductions for the full language of ATL*, which generalises
CTL*, would require even stricter equivalences and thus yield yet smaller practical gains. This is the
main reason that SATL* rather than full ATL* was investigated in [25]. On the one hand, it remains
more expressive than LTL, with the strategic modality adding an entirely new class of properties to
reason about, and non-nested strategic modalities being sufficient for stating most properties of practical
interest and relevance. On the other hand, its distinguishing power is not significantly larger than that
of LTL: note that sATL* merely augments LTL with a single strategic modality at the beginning of
the formula, and also allows Boolean combinations of such properties.

This suggests the same notions of equivalence as for LTL, namely stuttering trace equivalence (without
concurrency fairness) and preserving representatives of Mazurkiewicz traces (under the CF semantics)
could be adapted to sSATL*. This is indeed the case. Furthermore, as we will show in the remainder of
this section, it is a relatively direct adaptation. Existing procedures and their implementations developed
over the years for LTL can be reused in this new setting in a rare case of a “free lunch”. Of course,
nothing is ever truly free in the world of computational complexity, and in this case it can be conjectured
that the equivalences upon which LTL reductions are built upon are actually slightly more discriminative
than required by the language of LTL, and sufficiently enough to also differentiate between formulas of
sATL*.

32

We now recall the formal definitions of stuttering trace equivalence and Mazurkiewicz traces.

3.2.1 Stuttering trace equivalence

Intuitively, two paths are stuttering equivalent if they can be divided into corresponding finite segments,
such that exactly the same propositions are satisfied in each segment. Two models are called stuttering

path equivalent if each path in one model has a corresponding stuttering equivalent path in the other.

Definition 3.2.1 (Stuttering equivalence). Paths w, 7" € Il);(g) are stuttering equivalent, denoted m =,
7', if there exists a partition By = (n[0],...,7[iy1 — 1]), By = (w[i1],...,w[iz —1]), ... of the states of
m, and an analogous partition By, BY, ... of the states of 7', such that for each j = 0 : B; and B} are
nonempty and finite, and V(g) n PV =V (g') n PV for every g € B; and g’ € Bj.

States g and ¢’ are stuttering path equivalent, denoted g =, ¢', iff for every path © starting from g,
there is a path © starting from g' such that ™ =, 7, and for every path @' starting from ¢, there is a

path © starting from g such that T =4 7'.

Models M and M' € M are stuttering path equivalent, denoted M =, M’ , iff for each path m € (1),

there is a path ' € Wy (1) such that m =, «'.

The following theorem connects stuttering equivalence with LTL, stating that two stuttering equiv-

alent models satisfy exactly the same formulas of LTL without the next step operator X.

Theorem 3.2.2 ([41]). If M =, M’, then, for any LTL formula ¢ (without the operator X) over PV,
we have M, = ¢ iff M',/ = .

3.2.2 Mazurkiewicz traces

Although traces were already studied in the late 1960s within a combinatorial context [44], trace theory
was first formulated by Mazurkiewicz in the subsequent decade [45, 46, 42]. Since then, it has made a
major impact on a number of quite diverse areas, especially those of formal languages and of concurrent
systems. In this thesis, we are interested in the latter, where trace theory provides the formal, mathe-
matical framework for reasoning about concurrent processes. Here, we recall the key definitions of finite

and infinite traces.

Definition 3.2.3 (Finite traces). Let Evt* be the set of finite sequences of events, and let w,w' € Evt*.
We say that w ~1 w' iff w = wiee'wy and w' = wie'ews, for some wi, ws € Evt* and (e,e’) € I. Let
=7 be the reflexive and transitive closure of ~y. Finite traces are the equivalence classes of the relation

=7, denoted by |w]=,, and formally defined as |w]=, = {w’' € Evt* | w' =1 w}.

To define infinite traces, we need additional concepts.

Definition 3.2.4 (Infinite traces). Let Evt® be the set of infinite sequences of events, and let v,v’ € Evt®.
The relation <y is defined as follows:
v <7 v iff Vu e Pref(v)da € Pref(v)Iu' € Pref(v')(u € Pref(a) A 4 =5 u'),

where Pref(v) denotes the set of the finite prefives of v.! Moreover, let v =% v iff v <; v and v <; v.
Infinite traces are the equivalence classes of the relation =%, denoted by [v]zy, and formally defined as
[w]=s = {v" € Bot” | o' =F v}.

1That is, each finite prefix of v can be extended to a permutation (under commuting adjacent independent events) of
some prefix of v’.

33

The following theorem connects equivalences induced by traces with paths in AMAS models. Note
that while it originally refers to traces in a finite state program in the cited work of Peled [43], we consider
sequences of events indiscriminately of agents and strategies. Hence, the theorem remains applicable to
IIS as defined in Definition 2.1.3 and to their undeadlocked variant of Definition 2.3.1 (as well as to the
extension of IIS that will be introduced in Chapter 5).

Theorem 3.2.5 ([43]). Let M be a model. If m,7" € (1) such that Evt(n) =5 Evt(n’), then 7 =5 .

Thus, LTL_x cannot distinguish between paths over representatives of the same (infinite) trace.

3.3 The POR algorithm

It must be emphasised that a model, reduced or not, is not of interest in itself from a practical standpoint.

Rather, we are interested in the results of a model checking procedure, i.e. whether some property
holds in the model or not. The key aspect of partial order reductions is that the reduction is applied
while generating the model from its representation, in this case the network of asynchronous automata
comprising an AMAS. In other words, the full model containing all interleavings, which may in fact
be too large to be stored in available memory, is never created. Furthermore, it is possible to go one
step further and perform on-the-fly model checking at the same time as generating the reduced model
for maximum efficiency. While this is indeed how partial order reductions are applied in practice, the
focus of this thesis is on reductions themselves, so model checking procedures will not be discussed here.
However, we refer the interested reader to e.g. [41, 47, 48].

Technically, the model is constructed by systematically exploring the space of global states, starting
from the intial one ¢, via depth-first search (DFS). Successor global states are obtained by taking all
enabled events (see Definition 2.2.4) and following the global transition function accordingly. The
reduction consists in skipping some enabled events when generating the model, thereby eliminating their
associated transitions and successor states. This subset of enabled events is referred to in the seminal
papers on partial order reduction as a stubborn set, a persistent set, or an ample set. In this thesis,
we will use the latter term. Clearly, ample sets should be as small as possible in order to maximise
model reduction, but at the same time provably sufficient to preserve all properties of the considered
logic. Furthermore, the computational complexity of obtaining ample sets is no less important in any
practical applications. As it turns out, the exact computation of a minimal ample set is an NP-hard
problem [49], therefore calculating it (for each global state!) is practically not feasible. Instead, much
more efficient heuristics have been proposed that yield overapproximations. They will be discussed in the
next subsection.

In the algorithm, the stack represents a path m = gpeggie; - - - g, that is currently being visited. For

the top element of the stack g,, the following four operations are computed in a loop:
1. Identify the set enabled(g,) S FEvt of enabled events.
2. Heuristically select a subset E(g,) S enabled(gy,) of possible events (see Section section 3.3.1).

3. For any event e € E(g,), compute the successor state ¢’ such that g, > ¢, and add ¢’ to the stack
thereby generating the path ' = ggeggier -« - gneg’. Recursively proceed to explore the submodel

originating at ¢’ by means of the present algorithm, beginning at step 1.

4. Remove g, from the stack.

The algorithm begins with the stack comprising of the initial state of the model M of an AMAS, and

terminates when the stack is empty. Note that the model generated by the algorithm must be a submodel

34

of M. Moreover, it is generated directly from the AMAS, without ever generating the full model M.
Finally, the size of the reduced model crucially depends on the ratio E(g)/enabled(g). The choice of E(g)

is discussed in the next subsection.

3.3.1 Heuristics

It turns out that the heuristics previously defined for LTL partial order reductions [43, 41], remain
applicable in the new context of verifying properties specified with sATL™, involving strategic ability
of agents. The following three conditions, originally inspired by [41] and used for sSATL* reductions in
[1], are sufficient for selecting ample sets E(g,) S enabled(g,) that yield reduced models preserving all
formulas of sSATL™.

C1 Along each path 7 in M that starts at g, each event that is dependent on an event in E(g) cannot
be executed in 7 unless an event in E(g) is executed first in 7. Formally, VY € I1;(g) such that
T = goeogieé1 - .. with go = g, and Ve’ € Fut such that (¢/,¢”) ¢ 14 for some ¢” € E(g), if e; = ¢’ for
some ¢ > 0, then e; € E(g) for some j < 1.

C2 If E(g) # enabled(g), then E(g) € Invisa.

C3 For every cycle in M’ there is at least one node g in the cycle for which all the successors of g are
expanded, i.e., E(g) = enabled(g).

In case there are multiple subsets of enabled(g) satisfying conditions C1-C3, any of them can be

selected as the ample set.

3.4 Adapting POR for strategic ability

The previous two sections have established the theoretical basis of partial order reductions (Section 3.2)
and recalled the POR algorithm for LTL (Section 3.3), in particular the heuristic conditions for the
choice of ample sets. This section covers the main technical result of this chapter, namely, the adaptation
of these reductions from purely temporal LTL properties to temporal-strategic formulas of sATL”‘XZ/7
and even further, to temporal-strategic-epistemic properties specified using SATLK*g. Correctness of
reductions is established in number of semantical settings: assuming the objective or subjective notion
of strategic ability, proactive or reactive opponents (Z € {Std, React}), and memoryless or perfect recall
strategies with imperfect information (Y € {ir,iR}). We also demonstrate why this approach cannot be

extended also to agents with perfect information.

3.4.1 sATL* with imperfect information

We state two auxiliary lemmas that will be useful throughout the remainder of this section. The first
one concerns the relation between outcome sets of imperfect information (ir and iR) strategies in the full

model and its submodel.

Lemma 3.4.1. Let M’ be a submodel of M, and Y € {ir,iR}. For each Y -joint strategy o4 we have

outpr (t,04) = outpr(t,04) N ap (1) and outhd™ (1,04) = outhd ™ (1, 04) N TTESE ().

Proof. Note that each Y-strategy in M is also a well defined Y-strategy in M’, since ir- as well as iR-
strategies are defined on the local states of the AMAS, extended by both M and M’ (cf. Definition 3.1.1).
Thus, the lemma follows directly from Definitions 2.2.5 and 2.2.9, together with the fact that Iy (:) S

35

The second lemma says that paths which follow the same sequence of events from agent i’s perspective

cannot be distinguished by any strategy of i.

Lemma 3.4.2. Let M be a model, m,7’ € (), Y € {ir,iR}, and for some i € A: Evt(r) |got,=
Evt(r') |got,- Then, for each Y -strategy o;, we have that © € out (v, 0;) iff ©' € outp (¢, 04).

Proof. Let m = goeggre1gz2€2 ... and Evt(m) |gut, = €i,€i, €i, - - - be the sequence of events of agent ¢ in 7.
This sequence can be either finite or infinite. If it is empty, then the thesis trivially holds. So, assume
that Fvt(m) |gve, is not empty. Let L be equal to the length of Evt(w) |gyr, if Evt(mw) |ger, is finite or
be equal to oo otherwise. For each e;; let w[e;;] = 7[i;] = g;; denote the global state from which e;; is
executed in 7, where 0 < j < L.

By induction we can show that for each 0 < j < L we have w[e;,]* = 7'[e;,]*. For j = 0 it is easy to
note that 7[e;,]* = 7'[e;,]° = ¢, which follows from the fact that the paths 7 and 7’ start at the same
global state ¢ and Evt(n) |got,= Eot(n') |got, -

Assume that the thesis holds for j = k. The induction step follows from the fact the local evolution T;
is a function, so if 7[e;, |* = 7'[e;,]* = [for some local state [€ L;, then m[e;,,, " = 7'[e;, ., |" = Ti(l, €5,).

So, the events of Evt; are executed from the same local states in 7 and «’, which means that for each
ir-strategy o, we have that ¢;, € oy(w[i;]") iff e;, € oy(n'[;]") for 0 < j < L.

Furthermore, it means that for each j > 0 such that e;, is defined, we have w[e;] .7[e;,]" =
7'[ei,)7 [ei,]

from which an event of agent 7 is executed.

¢ so the local histories h;, h! € L;r are also the same in m and 7" at each global state

Thus, for each ir-strategy o;, we have that e;, € oi(m[i;]") iff ei; € oi(m'[i; Y for 0 < j < L.
J

Analogously, for each iR-strategy o;, we have that e;, € o;(h;) iff e;; € o3(h}) for 0 < j < L.
Consequently, for each Y-strategy o;, we have m € outp (¢, 0;) iff © € outps(¢,0;), which concludes
the proof.]

The lemma can be easily generalised to joint strategies o4 € XY, Y € {ir,iR}. However, the same
property does not hold for perfect information strategies, since they are defined on the global states of
the model rather than those of agents’ local components. Hence, the state can be changed by any agent’s

execution of any event.?

Definition 3.4.3 (Structural condition AE(A)). Consider model M and its submodel M'. Let A € A,
Y € {ir,iR}, and Z € {Std, React}. By AE(A)Z we denote the property:

VoaeXY Vmeout? (1,04) I’ €outfy(t,04): m=47'.

In order to prove that model reductions based on stuttering equivalence are applicable to sSATL*, we
need to show that firstly, the reduced models obtained using the POR algorithm discussed in Section 3.3
satisfy AE(A), and secondly, that models satisfying this structural property preserve satisfaction of
sATL* formulas. We start with the former.

Theorem 3.4.4. Let AC A, Y e {ir,iR}, Z € {Std, React}, M be a model, and M’ < M be the reduced
model generated by DFS with the choice of E(g') for g’ € St given by conditions C1, C2, C3 and the
independence relation 1. Then, M' satisfies AE(A)Z.

Proof. Notice that the reduction of M under the conditions C1, C2, C3 above is equivalent to the
reduction of M without the e-loops under the conditions C1, C2, C3 of [47], and then adding the
e-loops to each state of the reduced model where there exists a miscoordinating combination of agents’

choices (cf. Section 2.3). Although the setting is slightly different, it can be shown similarly to [41,

2For the same reason, Lemma 3.4.2 it is not applicable to any multi-agent formalism with synchronous execution semantics

(e.g., iICGS).

36

Theorem 12] that the conditions C1, C2, C3 guarantee that the models: (i) M without e-loops and (ii)
M’ without e-loops are stuttering path equivalent. More precisely, for each path m = ggeggier -+ with
go = ¢ (without e-transitions) in M there is a stuttering equivalent path 7/ = g{e(gie} -+ with g{ = ¢
(without e-transitions) in M’ such that Evt(n)|vs, = Fvt(n’)|vis,, i-€., 7 and 7’ have the same maximal
sequence of visible events for A. (*)

We will now prove that this implies M =, M’. Removing the e-loops from M eliminates two kinds
of paths: (a) paths with infinitely many “proper” events, and (b) paths ending with an infinite sequence
of e-transitions. Consider a path 7 of type (a) from M. Notice that the path 71, obtained by removing
the e-transitions from 7, is stuttering-equivalent to w. Moreover, by (*), there exists a path mo in M’
without e-transitions, which is stuttering-equivalent to 7. By transitivity of the stuttering equivalence,
we have that ms is stuttering equivalent to 7. Since 7o must also be a path in M’, this concludes this
part of the proof.

Consider a path 7 of type (b) from M, i.e., 7 ends with an infinite sequence of e-transitions. Let
m be the sequence obtained from 7 after removing e-transitions, and 7o be any infinite path without
e-transitions such that m; is its prefix. Then, it follows from (*) that there is a stuttering equivalent
path 75 = gpe(gie’ --- with gj = ¢ in M’ such that Evt(ma)|vis, = Evt(mh)|vis,. Consider the minimal
finite prefix 7} of 7 such that Fvt(n))|vis, = Evt(m1)|vis,. Clearly, 7} is a sequence in M’ and can be
extended with an infinite number of e-transitions to the path 7’ in M’. It is easy to see that = and 7’ are
stuttering equivalent.

So far, we have shown that our reduction under the conditions C1, C2, C3 guarantees that the
models M and M’ are stuttering path equivalent, and more precisely that for each path m = ggeggier - - -
with go = ¢ in M there is a stuttering equivalent path #' = g{ejgie} -+ with g = ¢ in M’ such that
Evt(m)|vis, = Evt(n')|vis,, 1.6, m and 7’ have the same maximal sequence of visible events for A. To
show that M’ satisfies AE(A)Z, consider an Y-joint strategy o4 and 7 € out%,(1,04). As demonstrated
above, there is 7' € (1) such that 7 =; 7’ and Evt(n)|vis, = Evt(n')|vis,. Since Evt; © Visy
for each 7 € A, the same sequence of events of each Ewvt; is executed in m and 7’. Note that opponent
reactiveness only restricts the outcome sets, and not the model itself; hence, the above reasoning applies
to Z = Std as well as Z = React. By the generalization of Lemma 3.4.2 to Y-joint strategies we get
7' € out%,(1,04). Thus, by Lemma 3.4.1 we have 7’ € outZ,,(1,04). O

We now show that the reduced models satisfying AE(A)Z preserve sATL*% for strategy semantics
Y € {ir,iR} and outcome types Z € {Std, React}.

Theorem 3.4.5. Let AC A, Y € {ir,iR}, Z € {Std, React}, and let model M' € M satisfy AE(A)Z. For
each sSATL*Z formula o, that refers only to coalitions A C A, we have that M, 1 EZ o iff M,/ EZ .

Proof. Proof by induction on the structure of ¢. We show the case ¢ = {AY)y. The cases for —, A are
straightforward.

Notice that out{(t,04) S outf;(t,04), which together with the condition AE(A)Z implies that
the sets out?;(t,0 ;) and out%, (1,0 ;) are stuttering path equivalent. Hence, the thesis follows from
Theorem 3.2.2. O

Together with Theorem 3.4.4, we obtain the following.

Theorem 3.4.6. Let M be a model, and let M' < M be the reduced model generated by DFS with
the choice of E(g') for g’ € St given by conditions C1, C2, C3 and the independence relation I4 py .
For each sATL*% formula ¢ over PV, that refers only to coalitions A c A, we have: M. EZ o iff
M EZ p, where Y € {ir,iR}.

37

3.4.2 Concurrency-fair sATL* with imperfect information

In Section 3.4.1, we have established a reduction scheme for sATL* under imperfect information, for both
memoryless (ir) and perfect recall (iR) strategies. This approach, based on stuttering equivalence and the
POR algorithm for LTL, works for the standard definition of strategy outcome (Definition 2.2.5), as well
as for the restricted, opponent-reactive outcome sets (Definition 2.3.4) if the RO condition is assumed.
However, this does not easily extend to the notion of concurrency-fairness (CF) discussed in Sec-
tion 2.2.4. Note that unlike opponent reactivity, CF does not merely restrict the outcome sets of strate-
gies, but also the set of paths in the model. As a consequence, stuttering equivalence does not preserve
CF, necessitating a different approach to reductions when concurrency-fair paths are involved. The good

news is, Mazurkiewicz traces preserve CF in reduced models.

Definition 3.4.7 (Structural condition AECF). Consider model M and its submodel M'. Let A < A
and Y € {ir,iR}. By AECF we denote the property:

Ve 52T (1) 3’ e I3 (1) : Ewt(r) =4 Evt(r').

We first show that each set outp(g,04) is trace-complete in the sense that with each path 7 such

that Evt(m) = w, it contains a path over any w’ € [w]=s.

Lemma 3.4.8. Let 7 € outp(t,04) and Evt(r) = w. Then, V' € [w]=-37" € out3td(v,04) such that
Evt(r") = w'.

Proof. Let M’ be obtained from M by fixing P;(l;) = {0;({;)} for each i € A,l; € L;, and pruning the
transitions accordingly. That is, transitions of agents outside coalition A remain unchanged, while agents
in A only keep those consistent with strategy 4. Consider the set of paths ITy(1). Let w be a sequence of
events obtained by traversing M’ along some path 7, i.e., w = Evt(r). Following the inductive reasoning
of [43, Theorem 3.3|, while reading w, an arbitrary equivalent sequence w’ € II;(¢) can be produced.
Thus, [Ty (¢) is trace-complete. But, from the construction of M’ and in accordance with Definition 2.2.5,

we have that Iy (1) = out5t4(s,04), which ends the proof. O

The above lemma implies the following.

Lemma 3.4.9. Let M be a model and M’ its submodel satisfying the property AECF. Then, for each
ir-strategy oa, V7 € outh?(1,04) I’ € outhd(1,04) such that Evt(r) =% Evt(r').

Proof. Assume that 7 € outh?"(1,04). Then there is 7' € II5%*(,) such that Evt(r) =% Ewvt(r’) (by
AECF). Since M’ is a submodel of M, we have that 7/ € II5#*(,). This implies that 7’ € outh#* (1, 04)
by Lemma 3.4.8. Since 7’ € II§# (1) by Definition 2.2.5, we obtain that 7’ € outh#* (1,0 4), which together
with the fact that Evt(m) =Y Evt(n’) completes the proof. O

Theorem 3.4.10. Let M be a model and M’ its submodel satisfying AECF. For each sATL*L™ formula
p over PV we have:
]‘47 L Fair) Zﬁ le7 J Fair ©.

i 1

Proof. Proof by induction on the structure of . We show the case ¢ = {A)y. The cases for —, A are

straightforward.

(=) Follows from the fact that for each ir-joint strategy o4 we have outha*(1,04) =

outh¥ (1, 04) N TIESE (1), s0 outh®*(1,04) S outh?™ (1, 04).

(<) Assume that M’ . =52 (A)y. From the semantics, there is an ir-joint strategy o4 such that

for each m € outh®i*(1,04) we have M', 7 =" 4. In order to prove the thesis, we show that for each

7 € outhd* (1, 04)\outt¥ (1,04) we have M, 7 |=5ar . Tt follows from Lemma 3.4.9 and Theorem 3.2.5

that for each 7 € outh?™(1,04) there is 7 € outh®*(1,04) such that 7 =, 7. So, M’, 7' =T 4 implies

that M, m =5 . Thus, we can conclude that M, . E=E¥T Ay, O

1r 1

38

3.4.3 sATLK": handling the epistemic operator

Thus far, we have demonstrated that partial order reductions for LTL can be adapted to sATL™, the
subset of ATL* without nested strategic modalities. This has several notable implications. Since the
existing method for LTL is not new, it has already been implemented in model checkers over the years
and applied in practice. These tools can now be leveraged in a new setting, that is, for the verification
of strategic ability on top of purely temporal properties.

In this section, we will show that this approach can be extended further still to sSATLK™, the epis-
temic extension of SATL*. We begin by augmenting the previous definition of stuttering equivalence

(Definition 3.2.1) to include the subset of agents J for whom states are indistinguishable.

Definition 3.4.11 (J-stuttering equivalence). Let J € A. Paths w, 7' € Ij;(g) are stuttering equivalent,
denoted m =5 7', if there exists a partition By = (w[0],...,w[i1 —1]), By = («[i1],...,7[i2 —1]), ... of
the states of m, and an analogous partition By, BY,... of the states of 7', such that for each j > 0 : B;
and B} are nonempty and finite, and V(g) n PV =V (g') n PV for every g € B; and g’ € B;.

Paths 7 and 7' are J-stuttering equivalent, denoted m =/ =, if 7 =, 7', and additionally we have
thatVj >0 Vge Bj,gd€eBj: g~;4g.

States g and g' are J-stuttering path equivalent, denoted g =7 ¢', iff for every path w starting from
g, there is a path ©' starting from g' such that @ =! 7, and for every path ' starting from g', there is a

path w starting from g such that = =/ '

Models M and M’ € M are J-stuttering path equivalent, denoted M =/ M’, iff they have the same

initial state, and for each path 7 € Ty(1;), there is a path 7' € Upp(1;) such that m =7 ')
Now, we prove the correctness of reduction, provided that J < A.

Theorem 3.4.12. Let J € A< A, Y € {ir,iR}, Z € {Std, React}, and consider model M, and its reduced
model M' € M generated by DFS with the choice of E(g') for ¢’ € St given by conditions C1-C3. Then,
for any sSATLK™ formula @ over PV that refers only to coalitions A c A, we have that M, EZ o iff

M =Y .

Proof. First, note that conditions C1-C3 remain unchanged from Section 3.3.1, where they were used in
the context of reductions for sATL*3Z/. Thus, by Theorem 3.4.4, we have that:

(*) M and M’ are stuttering path equivalent. For each path m = ggepgies ... with go = ¢ in M, there is a
stuttering equivalent path 7’ = g{egie} ... with g) = ¢ in M’ such that Evt(m)|vis, = Evt(7')|vis.,,

i.e., m and 7" have the same maximal sequence of visible events for A.
(**) M and M’ satisfy structural condition AE(A)Z.

That is, we have M,. |2 ¢ iff M’ 1; =Z ¢ for all non-epistemic . To extend the reasoning to
any sATLK*)Z/ formula, we first show that the full and reduced model are also J-stuttering equivalent,
which then allows to prove that epistemic subformulas are preserved in the reduced model M’. Finally,
we show that these subformulas can be replaced with equivalent new propositions, effectively reducing

the problem to the previously proven case for sATL*?,.

Because J € A (and so all transitions of the agents in group J are visible), it follows directly from
C2 that if E(g) # enabled(g)\{€}, then Agt(a) nJ = & for any event o € E(g). This is a direct analogue
of the extra condition CJ from [35]. Together with (*), this implies that the full and reduced model are

also J-stuttering equivalent:

(***) M EJ M/.

39

Consider any subformula ¢ = K;1. As per the syntax of sSATLK™, temporal operators and strategic
modalities cannot be nested inside Kj;, so ¢ is a purely epistemic formula that only contains knowledge
operator(s) and propositional variables with Boolean connectives. Now, we will show it follows from (***)
that epistemic subformulas are preserved in the reduced model, i.e., for any state g such that g =/ ¢/,
we have M, g =2 o iff M',¢' EZ

(=) Assume that M, g =% K. Let Sty, = {gy € St | g ~; gy}, and take gy, such that ¢' ~; g;,. We
need to show that M’, g;, =Z 1. From g =/ ¢’ and by transitivity of relation ~;, we have that gy € Sty.
So, clearly M, gi, =7 . As gy =/ g, it follows from the inductive assumption that M’, g}, =5 1.
Hence, M’, g =% K;1).

(«) Assume that M’, ¢’ =2 K. Let St, = {9, € St' | ¢ ~;i g}, and take gy such that g ~; gy.
We need to show that M, g, =% 1. Consider a path m € M that contains g,,. From (***), there is a path
7' € M’, which contains a state g, € St', such that gy, =/ gy, By transitivity of ~;, we get that gy, € St
and thus M’ gy EZ . As gy =/ gy, it follows from the inductive assumption that M, gy =Z 1. Hence,

From the above we get that any epistemic subformula K;1) holds in the reduced model M’ iff it holds
in the corresponding state of the (J-stuttering equivalent) full model M. Now, we introduce auxiliary

propositional variables to replace epistemic subformulas, including nested ones.

Consider subformulas ¢q, ¢1, . . ., where ¢y = ¢, and for all i > 0, ; is an epistemic subformula nested
in p;_1. Note that in the reduced model M’, one can add a set of new propositional variables P}’ =
U, {sat,,} to PV, and extend the valuation function accordingly, so that we have V' : St’ — gPVVPY'
and sat,, is true in state ¢’ € St' iff M’, ¢’ =Z ;. That is, for each epistemic (sub)formula ¢;, a new
proposition sat,, is added, whose valuation in each state g’ € St’ corresponds to the satisfaction of ¢; in
that state of M’. Then, for the formula ¢’ = saty,, it clearly holds that M’, ¢’ =Z o' iff M', ¢’ EZ .
Furthermore, since epistemic subformulas only refer to agents i € J and we have that J € A, it follows
that Visapy = Visa pyupy and T4 py = 4 pyopyr. That is, replacing epistemic subformulas with
new propositions in this manner does not affect the visibility or independence of events wrt. A and PV.
Hence, we also have M’,g' =2 ¢ iff M,g EZ ¢, from (*) and (**) and by Theorem 3.4.4, as ¢ is a
SATL*Z formula. But from the construction of ¢, we have M’, ¢’ EZ ¢ iff Mg EZ ¢, so it also
holds that M, g =% ¢ iff M, g’ EZ ¢ for any sSATLK*Z formula . Thus, in particular we have that
M, =2 ¢ iff M, EZ . O

3.4.4 POR for subjective strategic ability

All formal results regarding partial order reductions obtained in this chapter for sSATL* and sATLK™
have assumed the objective notion of strategic ability and the clause from Definition 2.2.10. We will
now show they remain applicable also when subjective strategic ability is adopted, as defined in Defini-
tion 2.2.11.

Theorem 3.4.13. Let Y € {ir,iR}, Z € {Std, React}, A € A and Init; = {tfu{geSt|3,.4:9~it}
Let M be a model with multiple initial states Init 5, and let M' be the reduction of M generated by POR

using conditions C1-C8 for the choice of ample sets. Then, for any initial state v; € Init; and any
SATLK*Z formula o that refers only to coalition A, we have that M, =L o iff My SEZ .

Proof. For each ¢; € InitA, take M; constructed by DFS starting from ¢; (i.e., with a single initial state),
and let M/ be the reduction of M; generated by POR.

Take any path 7 € ITy;. Clearly, 7 € II;, for some i > 0. By Theorem 3.4.12, we have M; =/ M/, so
there is a .J-stuttering equivalent path 7’ € HM;. From the construction by DFS, I = HM;.

Hence, 7’ € Iy, which implies that M =7 M’. (*)

i€lnit 4

40

Take any joint strategy o ;. The subjective outcome of o 4 in M (resp. M’) is the sum of objective
outcomes of o 4 in M; (resp. M). But from AE,4, out; (1,0 4) =, outfﬂ(u, o 4)- So, analogously to the
reasoning for (*), it follows that Uie]m-u outfy (15,0 4) =s Uielmu out?; (tiyo ;). Hence, M and M’ also
satisfy AE(A)Z. (**)

Since (*) and (**), the thesis follows from Theorem 3.4.12; as in the case for objective semantics of

strategic ability. O

3.4.5 Counterexample for sATL* with perfect information

So far, we have only considered agents with imperfect information, showing that the reduction algorithm
for LTL can be adapted to SATL*Z and SATLK*Z for memoryless (Y = ir) and perfect recall (Y = iR)
strategies in this setting, with (Z = React) and without (Z = Std) assuming the condition of opponent
reactivity (RO), and for the objective as well as subjective notion of strategic ability. Unfortunately,
the same method does not extend to perfect information semantics, i.e. strategies of types Y = Ir and
Y = IR. Recall from Definition 2.2.3 that under perfect information, strategies are no longer defined on
the local states of agents’ components in the AMAS, but on the global states of the model (IIS). Since
any reduction of the latter involves pruning some global states and transitions, it intuitively follows that
perfect information strategies cannot be preserved in reduced models. This can be demonstrated using a

simple counterexample.

Example 3.4.14. Consider an AMAS composed of two agents {1,2} such that:
o Li={lj,i}}, L»={l313},
o Euvty = {loop,a}, FEwvtes = {loop, b},
o Pi(l) ={a,loop}, Pi(1F) = {loop}, Po(l3) = {b}, P»(13) = {loop},

. Tl(l%,a) = l%, Tg(lé,b) = l%

loop

a b
(Do o

Figure 3.1: AMAS for the counterexample in Example 3.4.14.

Let M be the model of the AMAS defined above. Now, consider an Ir-strategy o1 2y as follows:
° Ul(ﬂvl%) =a, 01(1%7@) = Ol(lgvl%) =€
° 02(l%7l%) = 02(l%7l%) =b, 02(1%7@) =€

It is easy to see that the outcome set out™, ((11,13), 0(1,2y) is not trace-complete. Note that (a,b) € I, but

while outyy ((11,13),01,2y) contains the path over ab(loop)”, it does not contain any path over ba(loop)~.

3.5 Experimental evaluation

In this section, we apply in practice model reductions obtained for the verification of strategic and

strategic-epistemic formulas in AMAS. To that end, we employ the state-of-the-art verifier SPIN, which

41

#define N 2

bool in [N];
chan go = [0] of { pid }
chan leave = [0] of { pid }

active [N] proctype train ()
go! pid —> goto T;

leave! pid —> goto A;
skip — goto W;

—EBEs

active proctype controller ()

pid t;
G: atomic { go?t — in[t] = true; } —> goto R;
R: atomic { leave?t —> in[t] = false; } —> goto G;
}

Figure 3.2: PROMELA code for the Train-Gate-Controller model.

implements LTL partial order reductions. Thus, besides evaluating the efficiency of reduction for sATL*
and sSATLK™, at the same time we demonstrate a major advantage of our approach, that is, using existing
tools, originally intended for linear-time logic, for reasoning about strategic ability of agents. We first
introduce SPIN and its input language PROMELA.

3.5.1 The model checker SPIN

Created by Gerard Holzmann, SPIN (Simple PROMELA Interpreter) is an LTL model checker. The tool
remains in active development since 1980, with the most recent version published in 2020. Its source code
is also publicly available.

Over the years, SPIN has been successfully employed in practice for the verification of real-world
systems, including mission-critical software for several space missions, e.g. the Cassini [16], Deep Space 1
[17], and Mars Exploration Rover [18] probes. It was also used to investigate Toyota car control software,

and to verify transmission protocols in medical devices.

3.5.2 Input language: PROMELA

PROMELA (Process Meta Language) is the input language for SPIN. It allows for modelling concur-
rent processes that exchange information with one another either asynchronously, via buffered message
channels of arbitrary size, or synchronously, via rendez-vous communication, which can be considered a

message channel of size 0.

Example 3.5.1. Recall the Train-Gate-Controller (TGC) AMAS and its IS presented in the previous
chapter (Examples 2.1.2 and 2.1.4). Figure 3.2 shows the PROMELA representation of this model. The
local variable _pid and its data type pid are predefined in PROMELA to store the process ID, i.e. the
instantiation number of an executed process. The first process with _pid = 0 is always created automati-
cally. Note the synchronised, rendez-vous communication on two channels go and leave, where operators
! and ? denote sending and receiving a message, respectively. In this case, the controller synchronises
with one of the trains on channel go, receives its ID, and sets the Boolean variable iny to true accordingly.

Analogously, synchronisation occurs on the other channel whenever a train leaves the tunnel.

Note also that PROMELA allows for easily instantiating any desired number of symmetrical processes

using a single template, as in the case of trains in the above example.

42

3.5.3 Benchmarks

We now introduce the set of benchmarks used to assess the efficiency of sSATL™ partial order reduction

in practice, as well as the formulas in the context of which the reduction is considered.

Train-Gate-Controller

The first benchmark is Train-Gate-Controller (TGC), inspired by [50, 51, 37], which was already pre-
sented and used as a running example in Chapter 2. In particular, the AMAS for TGC and its
unfolding to an IIS were demonstrated in Examples 2.1.2 and 2.1.4, respectively. Furthermore, the
PROMELA code for this model was shown in Figure 3.2. We scale the TGC benchmark with the num-
ber of trains; recall that the variant of TGC with n trains is denoted by TGC,,. The input formula is
¢1 = DG —(V 1 <cinj<nini Ainy)), which specifies that the controller ¢ can ensure that different trains

t1,...,t, are never simultaneously in the tunnel.

Faulty TGC

The second benchmark is Faulty TGC (FTGC), a variant of TGC proposed in [52] and inspired by [50, 53],
where one of the trains is faulty, i.e. its communication with the controller is malfunctioning. As such,
whenever this particular train enters or leaves the tunnel, rather than jointly execute an event shared
with the controller, it may instead select a local one. The behavior of the other trains and the controller
remains unchanged, i.e. it is exactly as in TGC. The same applies to the propositional variables in PV
and their valuation. By FTGC,,, we denote the instance of FTGC with n—1 flawless trains (¢1,...,t,-1)
and one faulty train ¢,,. The input formula ¢, is the same as ¢, used in the standard version of TGC,

see above.

Pipeline

The third benchmark is Pipeline, adapted from [54]. It features a sequence of n processes pi,...,Pn,
each of length m (except for p; and p,,, whose length is fixed at 2). Resembling a physical pipeline, they
are arranged so that an output transition of p; is always synchronized with the input transition of p; 1.
The input formula is ¢3 = {piPG (/\;<;<,, (7ini U (outy A --- Aouti 1 Ain))), where p; is the i-th process
in the pipeline and propositions in;, out; denote, respectively, that p; has started processing and that it
has delivered its output. Thus, ¢3 expresses that no process in the pipeline will start operating until the

output from every previous one has been delivered.

Asynchronous Simple Voting

The fourth benchmark is Asynchronous Simple Voting (ASV), inspired by the simple model of voting
and coercion from [55]. Figure 3.3 depicts the AMAS for this scenario.

There are n voters vy, .. ., v, participating in an election, where they choose from k candidates 1, ..., k.
Additionally, a single coercer agent ¢ attempts to make voters select a specific candidate. Each voter
has the choice between providing the coercer with a proof (i.e., ballot receipt) of how they voted, or
refusing to do so. We denote an AMAS for the scenario by ASV,, ;. The set of propositional variables
is PV = {votedy1,...,voted, k,revealed; 1, ..., revealed, v}, where voted;; denotes that v; voted for the
Jj-th candidate, while revealed;; denotes that v; additionally gave the coercer the proof of having voted
for j. For the ASV benchmark, we used input formula ¢4 = {v; DF (voted; , A —revealed; , A revealed;),
expressing that voter v; has a strategy to eventually have voted for candidate a, and have revealed a

receipt for a b vote instead.

43

revealed; |, revealed, ,

voted; , voted; , voted; p voted; p

Figure 3.3: Voter v; (left) and coercer ¢ (right) in the ASV benchmark.

3.5.4 Results

We used the SPIN verifier to generate the state space from each benchmark’s PROMELA model. This was
done twice for each instance: once with the built-in partial order reduction functionality of SPIN disabled,
and once with it enabled. Note that while SPIN is a model checker, we are only interested in evaluating the
efficiency of reduction here. Hence, no actual model checking is performed, and the PROMELA models are
adapted to the context of formulas ¢1, g2, @3 beforehand. In particular, any propositions not featured in
the considered formula are irrelevant and thus can be safely removed from the model. These experiments
also do not aim at measuring the performance of the POR algorithm in SPIN, so we are not reporting

running times for specific instances.

Results: TGC

The results for TGC represent the best case scenario for partial order reduction, where the reduced model
is exponentially smaller than the full one. This benchmark is perfectly suited for the reduction algorithm,

see the comparison of full and reduced model with two trains in Figure 3.4.

Figure 3.4: TGCy: full model (left) and reduced model (right). Bold arrows denote visible transitions.
Our experimental results correspond with earlier estimates of the state space size: |St;rs(rae,)| =

O(2"*1) for the full model, and |Str; | = O(n) for the reduced one [35]. The results are presented in
Figure 3.5.

44

100%
—— 90%

80%

70%
60%
50%
40%
30%
20%
10%

0%
n=4 n=5 n=6 n=7 n=8 n=9 n=10

e reduction (states) — e====reduction (transitions)

Figure 3.5: Effectiveness of reduction for the TGC benchmark with n trains.

Results: Faulty TGC

Of course, it would be unrealistic to always expect exponential reduction in practice, and indeed, this
is no longer the case with FTGC. Nonetheless, the reduction remains significant, particularly for larger
instances with more trains. The gains are notably larger in the transition space compared to the state
space: we get a 63% reduction of the former versus a 45% reduction of the latter (for n = 10). This is
good news, as the number of transitions is typically the decisive factor in the complexity of model checking

(and it is usually much larger than the number of states). The results are presented in Figure 3.6.

70%

L — 60%

50%

40%

/ 30%

20%

10%

0%
n=4 n=5 n=6 n=7 n=8 n=9 n=10

e reduction (states) — e====reduction (transitions)

Figure 3.6: Effectiveness of reduction for the FTGC benchmark with n trains.

45

Results: Pipeline

While not exponential as in the case of FTGC, compared to the latter benchmark the reduction obtained
for Pipeline is much higher, exceeding 90 % in larger instances. Furthermore, and no less importantly, its
effectiveness actually increases with the size of the model, which is excellent news, given that the larger
the state space, the more essential model reductions become in any real-world applications. Additionally,
we observe scaling with both parameters here: not only the number of processes n in the pipeline, but

also their average length m. The results are presented in Figure 3.7.

100%
M 90%
-———===" 80%
70%
60%
50%
40%
30%
20%
10%
0%
n=3 n=4 n=5 n=6 n=7
== == reduction (states), m=6 == == reduction (transitions), m =6
e reduction (states), m =7 e reduction (transitions), m =7

Figure 3.7: Effectiveness of reduction for the Pipeline benchmark with n processes, each of length m.

Results: ASV

Similarly to the previous benchmark, the reduction is not exponential in ASV. Since the local components
of voters and the coercer are larger than the processes in Pipeline, in this case we were able to generate
the IIS only up to n = 7 voters (plus one coercer). Hence, reduction efficiency is also somewhat lower than
in the previous benchmark. Nonetheless, it also increases with the size of the model, and thus lends itself
well for practical usage. Furthermore, note that the reduction of the transition space is slightly larger
than that of the state space. As the former is typically the more important factor in the complexity of
model checking strategic ability, this also bodes well for real-world applications. The results are presented

in Figure 3.8.

3.6 Summary

In this chapter, we have established a method for partial order reduction in the verification of strategic
ability in asynchronous multi-agent systems, for imperfect information strategies in several semantical
settings: standard and reactive opponents, agents with and without memory, objective and subjective
notion of strategic ability. The approach is a non-trivial adaptation of the existing POR algorithm for
linear-time temporal logic LTL. As such, the proposed reductions for strategic ability immediately enjoy
a number of unique advantages. Despite the higher expressivity of sSATL¥, there is no increase in the

computational complexity of the POR algorithm, and indeed, the efficiency of obtained reduction remains

46

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
n=2 n=3 n=4 n=5 n=6 n=7

e reduction (states), k=2 e reduction (transitions), k = 2 CF-reduction (transitions), k = 2
== = reduction (states), k=3 == = reduction (transitions), k =3 CF-reduction (transitions), k =3
------ reduction (states), k=4 eseeee reduction (transitions), k =4 CF-reduction (transitions), k=4

Figure 3.8: Effectiveness of reduction for the ASV benchmark with n voters and k candidates.

high. This curious case of a seemingly “free lunch”, which should not exist in computational complexity,
can be attributed to existing LTL reductions (or more precisely, the equivalences they are based on) being
more discriminative than strictly required by LTL itself, and enough to also distinguish between formulas
of SATL* (and even of its epistemic extension sSATLK™). Hence, it would be perhaps more appropriate,
if less glamorous, to see it as “leftovers” from a previous meal. Regardless, its consequences are hard
to overlook, perhaps to most important of which is that existing tools can be essentially repurposed for
strategic verification straight off the shelf. As partial order reductions for LTL have been known for
over thirty years, these are already mature projects that have been developed and optimised for decades,
and have been thoroughly tested by experts in the field of formal verification on real-world systems and
protocols. The SPIN model checker, used for experimental evaluation of reduction for strategic ability
here, is an excellent example, having been developed by Gerard Holzmann since 1998. Adapting the
existing method for POR allows for leveraging years of progress in LTL verification in entirely new
applications. For instance, the verification of an election protocol in electronic voting can involve a broad
spectrum of strategic, temporal, and epistemic formulas, from the underlying cryptographic layer to the
“social” properties like coercion resistance, where the notions of autonomous agents and strategic play

become essential.

3.6.1 Related work

The three seminal papers on partial order reduction for LTL are the works of Valmari [56], Peled [54],
and Godefroid [57]. Over the years, POR has been defined also for CTL [40], and epistemic extensions
of linear and branching temporal logics [35].

The main result presented in this chapter, i.e. the adaptation of LTL reductions to the verification of
strategic ability properties specified in sSATL", originated in [25, 1], where AMAS and the asynchronous
semantics for ATL* were also defined. Subsequently, it was demonstrated that this approach remains ap-
plicable in the updated AMAS execution semantics with auxiliary € transitions [2], and also for sSATLK™,
the epistemic extension of SATL* [3]. These are, to the best of our knowledge, the first and only works

47

that have proposed partial order reductions for strategic ability.

However, the technique of POR itself remains extensively studied today in the context of a broad
range of other formalisms and applications. These include recent work on reductions for reachability
games [58, 59], parity games and parameterised Boolean equation systems [60].

Dynamic POR (DPOR) [61] used in stateless model checking [62] aims to further reduce the number
of interleavings by tracking interactions between concurrent threads or processes at runtime in order
to identify backtracking points. DPOR was improved upon in [49], which replaces persistent sets
with source sets and introduces a new mechanism called wakeup trees to achieve optimality, in the
sense that only one scheduling per Mazurkiewicz trace is explored. Augmenting optimal DPOR, with
the notion of observability [63], i.e. introducing conditional independence relations based on future
“observer” operations, requires some fundamental changes to the reduction algorithm, but in some cases
can be superior to the trace-based approach.

A heuristic for detecting and extending stutter-invariant components of Biichi automata during the
translation from LTL was proposed in [64], allowing for using LTL reductions with formulas that are

not invariant under stuttering, in particular also those containing the next step operator X.

48

Chapter 4

Specialised Reductions

The material in Chapter 4 is based on the following papers to which the author of this thesis has

contributed:

[4] J. Arias, C. Budde, W. Penczek, L. Petrucci, T. Sidoruk, and M. Stoelinga, “Hackers vs. Secu-
rity: Attack-Defence Trees as Asynchronous Multi-agent Systems,” in Proceedings of ICFEM 2020.
Springer, 2020, pp. 3-19

[5] L. Petrucci, M. Knapik, W. Penczek, and T. Sidoruk, “Squeezing State Spaces of (Attack-Defence)
Trees,” in Proceedings of ICECCS 2019. 1EEE, 2019, pp. 71-80

The author’s involvement in these works includes defining the two reduction techniques in the paper
[5], as well as proofs of their correctness and a comparative analysis with partial order reduction, all of
which were recalled in this chapter. In the paper [4], the author was responsible for a theoretical and
experimental study of how the attack times in ADTree scenarios scale with coalition size, beginning the

avenue of research continued further in [6] and detailed in the next chapter of this thesis.

4.1 Introduction

Partial order reduction is a powerful technique, one of its major strengths being how universal it is.
While the efficiency depends on the specific model, and more precisely, on the visibility of agents’ events
w.r.t. the considered coalition, the approach can in principle be applied to any asynchronous multi-agent
system. However, it is often the case that a particular application of verification involves reduction and
model checking of systems that are quite similar to one another, and share some common characteristics
that are known beforehand. These traits may be used to define specialised reduction methods that can
be expected to yield additional gains, albeit for a significantly smaller class of models. In this section,
we will discuss such techniques for security scenarios translated from attack-defence trees (ADTrees) to
asynchronous multi-agent systems. Note that these AMAS retain the tree topology of their original
representation, so regardless of the specifics of the ADTree, synchronisation between agents always occurs
in a very specific way, from the leaves to the root of the tree. This can be leveraged to obtain better

model reductions.

4.2 Attack-Defence Trees (ADTrees)

Attack trees are a graphical formalism that represents attack scenarios in a tree structure, intended as a

means of modelling potential threats against complex systems, and thus providing means of evaluating

49

Name Graphics Semantics
Attack @ a = “basic attack action a done”
Defence d = “basic defence action d done”
And attack A = “attacks a; through a,, done”
Or defence D = “one of the defences d; through d,, done”

Counter defence

No defence

Inhibiting attack

Sequential and
attack

Failed reactive
defence

A = “attack a done and defence d not done”

A = “either attack a done or else defence d not done”

D = “either defence d done or else attack a not done”

A = “done attack a1, then attack ag, ... then attack a,”

A = “done attack a and then did not do defence d”

Table 4.1: ADTree constructs and their informal semantics.

50

their security. The root of an attack tree corresponds to the attackers’ overall goal, its child nodes refine
it into more specific sub-goals, all the way down to the leaves, which represent individual actions, at the
highest level of granularity considered.

Optionally, nodes can be associated with numerical attributes denoting additional characteristics of
actions, such as their associated financial cost, or the time required to perform them. Boolean functions
over attributes, called conditions, may then be defined to provide additional flexibility in modelling the
requirements for the success or failure of considered actions.

Attack-defence trees (ADTrees) extend this formalism with a representation of the defenders’ counter-
actions, thus providing a way to model the interplay between the two opposing parties. Analogously to
attacking actions, defence nodes can also be refined into sub-goals as desired. Table 4.1 lists the graphical

representations and informal semantics of basic ADTree constructs.

Example 4.2.1. Consider the ADTree scenario in Figure 4.1, featuring an attempt to steal a treasure
from a museum. To achieve their goal, the thieves must first access the exhibition room, which involves
bribing a guard (b), and forcing open the secure door (£). Both actions are costly and take some time.
Once the room has been breached, the attacker(s) can steal the treasure (ST), which takes a little time for
opening its display stand and putting it in a bag. If the two-thieves coalition is used, we encode in ST an
extra € 90 to hire the second thief—the computation function of the gate can handle this plurality—else
ST incurs no extra cost. Then, the thieves are ready to flee (TF), choosing an escape route to get away
(GA): this can be a spectacular escape in a helicopter (h), or a mundane one via the emergency exit (e).
The helicopter is expensive but fast, while the emergency exit is slower but at no cost. Furthermore, the
time to perform a successful escape could depend on the number of agents involved in the robbery. Again,

this can be encoded via computation functions in gate GA.

Name Cost Time

TS (treasure stolen)

p (police) €100 10 min

TF (thieves fleeing)

ST (steal treasure) €{0,90} 2 min
b (bribe gatekeeper) €500 1h
£ (force arm. door) €100 2h

GA (get away)

h (helicopter) €500 3 min
e (emergency exit) 10 min

Condition for TS:
init__time(p) > init_ time(ST) + time(GA)
(a) ADTree (b) Attributes of nodes

Figure 4.1: Example ADTree: treasure hunters.

As soon as the treasure room is breached (i.e. after b and £, but before ST) an alarm goes off at the
police station, so while the thieves flee the police hurries to intervene (p). The treasure is then successfully
stolen iff the thieves have fled and the police failed to arrive or does so too late. This last possibility is
captured by the condition associated with the TS gate (treasure stolen), which states that the arrival time

of the police must be greater than the time for the thieves to steal the treasure and go away.

4.3 Guarded Update Systems

Guarded Update Systems (GUS) can be thought of as a simplified rendition of EAMAS (defined in the

next chapter, cf. Section 5.2.1) that does not cater for agents. They are formally defined as follows.

51

Definition 4.3.1 (Guarded Update Systems [5]). A Guarded Update System (GUS) is a tuple M =
(St, s°, Acts,—), including:

e a finite set of states St;
o an initial state s° € St;
e a finite set of action names Acts;
e a transition relation — S St x Acts x G x U x St, where:
— G is a set of guards, i.e. boolean formulae over atoms of type t ~ 0, where t is a linear term

over a finite set of integer variables Vars and ~ a relation such that ~€ {<,=, >};

— U is a set of updates, i.e. sets of assignments of type v; := f(vo, ...,), where Vo<i<kv; € Vars,
v; € Vars and f is a function whose domain and codomain are compatible with the domains of

its arguments and target; it is assumed that each variable is assigned at most once per update;

A waluation of Vars is a function w: Vars — N, and the set of all valuations of Vars is denoted by

Vals. Furthermore, by u(w) € Vals we denote the valuation such that for v; € Vars:

fw(w), ... ,w(w)) if v; := f(vw,...,m) €u

w(vj) otherwise.

U(w)(vj)={

By g(w) we denote the boolean value of the expression obtained after valuating the variables in g with

w. For brevity, we will write s 99 o instead of (s,act, g,u,s") € —, and also denote acts(M) = Acts.
u

Definition 4.3.2 (Concrete Semantics of GUS [5]). Let M be a GUS, and w° € Vals be an initial

valuation of Vars. The concrete semantics of M over w is a tuple CS(M,w°) = (CS, w®, —), where:

ol = (,60);

o (CS = St x Vals is the set of concrete states;

e — C (S x Acts x CS is the transition relation such that (s,w) RN (s',w') iff s L9 o where g(w)
u

is true and w' = u(w), for some guard g and update u.
A run is defined as follows.

Definition 4.3.3 (Run [5]). A run p = tgactotiacty ... is an infinite sequence of alternating concrete

states and transitions such that for all i € N we have t; acti, tii1-

We denote the set of all runs starting from concrete state t € CS by Runs(M,t). When the starting

state is assumed to be initial, we write Runs(M).

4.3.1 Asynchronous product of GUS

The systems considered in this chapter are composed of modules that can share variables and synchronise

over common action labels. Hence, we define the asynchronous product of GUS.

Definition 4.3.4 (Asynchronous Product of GUS [5]). Consider a GUS M; = (St;, 80, Actsi, —;), for
i € {1,2}. The asynchronous product of My and My is the GUS M;||My = (St; x Sta, (s?,9), Acts; U

52

Actsy, —), with the transition rule defined in the usual way as follows:

g,act ’
act € Acts1\Actsa A 1 18

t
(81, 52) %’ (81, 52)

g,act
act € Actso\Actsy A s —— sh

9,

-t
(s1,52) %’ (s1,55)

g1,act g2,act
act € Actsy N Actsy A 81 ——> 8 A 59 5, 8
Ul 1 1 u 2 2

g1 Ag2,act (’ /)

(31732) 1752

U VU2

Note that the last rule above can be applied only if (u; U ug) is an update, i.e. each variable is assigned
at most once. The above definition is naturally extended to an arbitrary number of components, where

we sometimes write |7, M; instead of M||.. .|| M,.

4.3.2 Synchronisation topology

The synchronisation topology is a graph that records how components synchronise with one another.

Definition 4.3.5 (GUS Synchronisation Topology [5]). The synchronisation topology induced by a GUS
G = ||y M; is the undirected graph SG(G) = ({M; | ¢ = 0...n},&), where (M;, M;) € € iff i # j and
Acts; n Acts; # .

In the following, we assume an asynchronous GUS product G = ||7_,M; with a tree synchronisation

topology.

4.4 Translating ADTrees to GUS

The approach to modelling ADTrees as GUS is compositional, with specific transformation patterns
defined for different ADTree constructs. That is, each node of the original ADTree is modelled as a
separate automaton, whose pattern corresponds to the node’s type. Table 4.2 lists automata patterns for
specific types of ADTree constructs. The transformations are symmetrical for attack and defence nodes,
so the latter are omitted in the table.

Formally, given an ADTree 7 with a set of nodes {A; | i = 0...n}, a GUS M, is associated with
each node A;, and the associated synchronisation topology SG(T) is defined by replacing each node A;
of T with the GUS M;.

A run of ||7_,M; describes a successful execution of 7T if it eventually stabilises on an infinite loop of
executions of R_ ok, where R labels the root node of the tree SG(T).

In other words, successful executions of T eventually reach the good final state. The runs that end
with an infinite sequence of R_nok are 7T ’s failures, i.e. the bad final state can be reached.

The attributes of an ADTree node A; are modelled by corresponding variables in GUS M;, while the
conditions added to A; are represented by guards in M;. Variables are updated during the synchronisation
between a child and its parent node, mimicking how the values of the attributes are actually used. These
variables may be used in the guards of the node’s ancestors to check whether the actual value that was
set satisfies some condition.

In the figures, we employ message sender /recipient markings in a form of additional ! /7 action prefixes,
which is only a syntactic sugar. It allows for an explicit synchronisation between two partners. In the

particular case where there is no partner to synchronise with (root of the tree), this is a regular action.

53

ADTree construct Reduced Model Full Model (2 children only) |

Leaf node

Table 4.2: ADTree nodes and corresponding automata patterns.

54

Note that the full pattern may be replaced with a reduced one; this will be discussed, alongside other

approaches that mitigate state explosion, in the remainder of this chapter.

4.5 Pattern-based reduction

Recall from Section 4.4 the translation of ADTrees to GUUS. Note that Table 4.2 lists, in addition to
the full automata patterns, also basic reductions that can be used instead. These transformations, called
pattern reductions, make the concrete semantics of the resulting synchronisation topology amenable, while
keeping behaviours necessary to check ADTrees properties.

Essentially, before applying the pattern reduction, nodes can receive all ok and nok messages from
their children in any order, before performing their own actions and sending messages. The reduction
consists in providing a predefined selection of appropriate message orders and allows for constructing
agent models according to the patterns shown in Table 4.2, while preserving the ADTree properties [4,
Theorem 1].

The proofs of the soundness and correctness of this reduction will be presented in the subsequent
chapter, in the context of a translation to extended AMAS rather than GUS, using the same automata
patterns but representing agents.

Note also that pattern-based reduction is similar, but not identical, in its idea and application to the

classical partial order reduction. We expand on this comparison in Section 4.8.

4.6 Layer-based reduction

In this section, we will introduce a model reduction scheme applicable to networks of automata whose
topology of synchronisation is a tree. First, within the framework of Guarded Update Systems, we
demonstrate the relevant properties of such systems. Then, we demonstrate how these properties of tree
synchronisation topologies can be exploited to obtain additional model reductions, preserving reachability.

We will refer to this proposed method as layer-based reduction.

4.6.1 Properties of tree topologies

We begin by defining the relation of precedence between components of a synchronisation topology.
Intuitively, a child node precedes its parent if all the synchronisations between them occur before the

execution of any other action by the parent node.

Definition 4.6.1 (Precedence [5]). Let My be a node, and Mo one of its children. Mc precedes My,
denoted by Mo — My, if along each run p € Runs(G) no action from Actsy n Actsc appears after

executing an action act € Actsy\Actsc.

For the layer-based reduction to be applicable, all child nodes must precede their parents. Such

synchronisation trees are called root-directed.

Definition 4.6.2 (Root-directed Synchronisation Tree [5]). A synchronisation tree SG(G) is root-directed
if, for each node My and any of its children Mc, we have Mo — My .

The second necessary condition for layer-based reduction concerns variable updates. Specifically, runs
in the product of a subtree cannot depend on updates in disjoint subtrees. We formalise this notion as

update-separability.

Definition 4.6.3 (Update-separability [5]). Let SG(G) be a root-directed synchronisation tree. SG(G) is
update-separable if for each v € Vars the following conditions hold:

55

-
?Z'Tll

M l!outl

Ny

Figure 4.2: Example of a GUS with a tree synchronisation topology.

e v is updated in at most one component M,;

e v is tested only in guards of the ancestors of node M, in the tree SG(G).

Example 4.6.4. Figure 4.2 presents a simple tree synchronisation topology with components Mg, its two
children My, and My, , the only child Mc, of Mn,, and two children Mc,, Mc, of My,. Note that the
labeling convention of the sender’s and the recipient’s actions with ! and ?, respectively, only serves as
“syntactic sugar”. It is easy to see that the tree is root-directed. Furthermore, it is also update-separable,

since the variable v is only updated at leaf Mc, and read at the root Mp.

Subtrees are defined in a straightforward manner, as being rooted in some node of the full synchroni-
sation topology and containing only the descendants of that component. Furthermore, we formalise the

notion of run projections on subtrees.

Definition 4.6.5 (Subtree [5]). Let M; be a node of SG(G). The subtree of SG(G) rooted in M;, denoted
by IM;, is the tree containing M; and all its descendants.

Intuitively, the projection of a run p on a subtree ||M;, denotedby pyy,, is obtained by keeping from

p only the locations, transitions and variables belonging to the nodes in ||M;.

Definition 4.6.6 (Projections on Subtrees [5]). Let SG(G) = (G, &) be a synchronisation tree, M; be a
node of SG(G), I M; a subtree rooted in M;, and let p = toactotiacty ... be a run in Runs(G).
The projection of p on | M;, denoted by py,, is obtained by:

1. retaining in each concrete state t;,j € N only its projection (states and variables) on | M;;
2. keeping only the transitions in the nodes of || M;.

Note that for any action not in the subtree, the projected source and target states are identical, and

thus these actions are safely removed from the projected run.

Lemma 4.6.7 ([5]). Let SG(G) be a root-directed, update-separable tree. Let M; be a node and p €
Runs(G) be a run. Then, ppr, s a prefiz of some run p’ € Runs({M;).

Proof. 1t suffices to observe that by definition of update-separability the variables tested in pyy, are
updated only in | M. O]

56

We now demonstrate that the synchronisation topologies induced by attack-defence trees are both

root-directed and update-separable.
Lemma 4.6.8 ([5]). ADTrees topologies are root-directed and update-separable.

Proof. The root-directed property follows from the automata patterns used in the translation (cf. Ta-
ble 4.2). Note that it holds for all nodes of the full patterns that synchronisations with children occurs
before execution of local actions and before synchronisation with the parent. Since pattern-based reduc-
tion only prunes states and transitions without adding any new ones, clearly the same applies also to
reduced patterns.

The update-separability property follows from the fact variables are only updated when synchronising
with children and tested by ancestors. Analogously, this applies to full as well as reduced automata

patterns. 0

Having established that all necessary properties hold for GUS synchronisation topologies obtained by
translation from ADTrees using either the full or reduced automata patterns depicted in Table 4.2, we

can now outline the layer-based reduction itself.

4.6.2 Layered reduction at a single depth

In the layered construction, we consider specifically the last synchronisation of node My with one of its
children M¢, before any other action in My. Let #.pua(Mpy) be the number of children of node My.

Definition 4.6.9 (Last synchronisations with child nodes [5]). By the last synchronisations of My with
its children we mean the transitions (denoted by Ist), that are synchronising transitions of M and one of
its children Mc;, such that there are states s;, si+1,8i+2 and another transition t of M which does not
synchronise with any transition of its children Mc;, with s; Ist s;11 t s;12. The set of these transitions
is denoted by Lstc(My).

The reduction is applied to a single “layer”, corresponding to all nodes at the same depth of the tree
SG(G), as follows. Let us fix a depth d > 0 of SG(G). We add a fresh variable v,, initialised with 0, which
counts the total number of synchronisations between the nodes at depth d and the nodes at depth d + 1.

We modify each node My at depth d by adding to the update u of any transition in Lstc(My)
a new element vy := vg + #enaa(My). It is a way for node My to notify that it has performed all
synchronisations with its children.

The total number of the children of the nodes at depth d is # cpita(d) = #chia(Mn,)+ . . 4+#chia(Mn,),
where {My,, ..., My, } are all the nodes at depth d in SG(G).

In the next step of the construction, we also modify each node My at depth d by extending the guard
g of each transition ¢ of My which does not synchronise with any transition of the children of My to
g A (vg = #enua(d)). Intuitively, this prevents any action at depth d before all synchronisations with the

children are finished.

4.6.3 Layered reduction for the entire tree

In order to obtain the final result, denoted by SG'"(G), the above transformation is performed for each
depth 0 < d < height of SG(G).

Example 4.6.10 ([5]). Let us revisit Example 4.6.4 with the layered reduction scheme. The resulting
tree is shown in Figure 4.3. To that end, we add a new variable v; used at depth 1 in the tree. Note that
in the transformed model nodes My and My must wait until they both fully synchronise with their children

before they can synchronise with M.

57

Touty Touts

RO OBERO

Mp
s = =~
?z’nl, v = + 1 7ing ?’Lﬁg, v =+ 2
OO
Mn, v = 3, louty My, 2ing, vy = v +2 v = 3, loutsy

.

’ P ~
~
/’ ’a’ ~
~
- ~
. .- ~

!inl !in4
‘_‘ ling ling ‘_‘
0 . . V= 1@ e
Me,

Mc

1

Figure 4.3: Example of layered reduction.

The following proposition states that the technique of layered reductions preserves reachability.

Proposition 4.6.11 (Layer-based reduction preserves reachability [5]). Let SG(G) be a root-directed,
update-separable tree. A good (bad) final state s is reachable in SG(G) iff it is reachable in SG'"(G).

Proof. Tt follows from Lemma 4.6.7 and the construction of SG'"(G). O

Example 4.6.12 ([5]). Figure 4.4 shows the state space of the GUS from Figure 4.3. The grey nodes

and edges appear in the full state space but not in the layered reduction.

4.7 Experimental evaluation

Two sets of experiments were conducted to assess the efficiency of the pattern- and layer- based reduction

schemes.

4.7.1 Literature case studies

The first set of experiments involves three ADTree case studies from [4]. These ADTrees model specific
security scenarios, some of them based on real-world occurrences, the downside being that they are
not easily scalable as a result. Hence, in the second set of benchmarks we add a scalable ADTree, see
Section 4.7.3.

Forestalling a software release (forestall)

Based on a real-world instance [65], this case study models an attack on the intellectual property of a
company C, perpetrated by an unlawful competitor company U aiming to use the stolen code to release
their own software product first, thereby gaining a significant market advantage. Following [66], software
extraction from C must take place before U builds it into its own product, and U must furthermore
deploy to market before C, which takes place after U has integrated the stolen software into its product.

The ADTree and node attributes for forestall are presented in Figure 4.5.

58

1 ly ly

lllg outsy lllg lllg
lolaly lolalo lololo
n =3 n =3 n =3

Figure 4.4: State space for the GUS from Figure 4.3: full (14 states, 19 edges) vs. layer-based reduction
(12 states, 14 edges).

Compromising an IoT device (iot-dev)

A LAN-based attack against an Internet of Things (IoT) device, originally from [67], later extended in
[68], and further enriched in [4] with the addition of defence mechanisms. The attacker, having gained
access to the private network (either wireless or wired LAN) and acquired the corresponding access
credentials, can execute a malicious script by exploiting software vulnerabilities in the IoT device. The

ADTree and node attributes for iot-dev are presented in Figure 4.6.

Obtaining admin privileges (gain-admin)

A well-known case study in the literature [69, 70, 71, 66], modelling an attempt to gain administrative
privileges on a UNIX system command line interface. This requires either physical access to an already
logged-in console or attacking the SysAdmin to gain remote access via privilege escalation. We note that
unlike the previous two case studies, the structure of gain-admin is mostly branching, with all but one
gate in the original ADTree from [69] being disjunctions. The scenario was extended in [4], firstly with
the SAND gate (following [66]), and secondly, with the addition of reactive defences for certain attacks.
The ADTree and node attributes for gain-admin are presented in Figure 4.7.

4.7.2 Case studies: results

The results are summarised in Table 4.3. For each case study, it lists the number of states, the number

of transitions in the state space and its generation time in four cases:

59

Name Cost Time
FS : forestalling of softw. €0 10d

SC : steal code €0 0d
PRS: physical robbery succ. €0 0d
PR : physical robbery €0 0d
NAS : network attack succ. €0 0d
NA : network attack €0 1d
BRB: bribe €0 3d

icp: integr. code in prod. €2k 15d
dtm: deploy to market €1k 5d

BRB scr: secure coding rooms € 5k 0d
= . rfc: rob. finds code €0 0d
reb: rob. enters building €500 3 d

scr hr : hire robber €4k 10d
id :intrusion detection €200 1d

)) u pn
— -

heb: hacker exploits bug €0 3d

e b :system has a bug €0 0d

hh : hire hacker €1k 20d

psc: progr. steals code €0 7d
bp : bribe programmer €2k 15d

1]

Figure 4.5: The ADTree and node attributes for the forestall case study.

Name Cost Time
CIOTD: compromise IoT device €0 0Oh
APNS : access private net. succ. €0 1m
APN : access private net. €0 3m
GVC : get valid credentials €0 0Oh
CPN : connect to private net. €0 0Oh
AW s access WLAN €0 0h
AL :access LAN €0 0h
rms :run malicious script €100 30 m
esv :exploit soft. vulnerab. €10 1h
inc :inform of new connect. €5 1m
tla :two-level authentic. €5 1m
gc : get credentials €100 10h
bwk : break WPA keys €100 2h
fw :find WLAN €10 5h
sma :spoof MAC address €50 30m
flp :find LAN port €10 1h

Figure 4.6: The ADTree and node attributes for the iot-dev case study.

o the full model for each ADTree node, that comprises all possible combinations of messages received
from children, as in the “Full Model” column of Table 4.2;

¢ the model reduced with the layers reduction scheme introduced in Section 4.6,

¢ the model reduced to the patterns listed in the “Reduced Model” column of Table 4.2, as per the

reduction scheme discussed in Section 4.5;
o the model obtained with both of these reductions (patterns and layers);
e the size of the version with both reductions compared with the others (highlighted in green).

The experiments demonstrate that the two reduction techniques are quite complimentary, with sig-
nificant gains from applying both schemes together (i.e. patterns and layers), compared to using either
reduction alone. Notably, the only way to obtain the model for the largest of test cases (gain-admin)
within the timeout period was by combining the pattern- and layer-based reductions.

On its own, the pattern-based reduction performs better, which is in line with expectations, since it is
by far the more universal technique of the two, equally applicable to all nodes of the ADTree irrespectively

of its underlying topology of synchronisation.

60

Name Cost Time
0AP : obtain admin privileges €0 0m

GSAP: get SA password €0 0 m
ACLI: access c.c. CLI €0 2 m
TSA : trojan horse for SA €0 0m

DTH : defence against trojans €0 0 m
LSAS: LSA successful €0 0m
LSA :look over SA shoulder €0 0m
GAPS: GAP successful €0 2 m
GAP : get admin password €0 10 m
ECCS: enter c.c. successful €0 1h

: enter computer centre €0 0d
: corrupt Sys. Admin. €5k 5d
: E-Mail firewall €3k 0 m
: watchdog sys. daemon € 2k 5m
: trojan horse SA €100 3d
: no-visits policy €0 0d
1 spy SA terminal €0 30 m
: visit SA at work €20 2d
: befriend Sys. Admin. €500 14 d
: two-level authentic. €5 1m

: find guessable pass. €0 1d
: obtain password file €100 3d
scr :secure coding rooms €5k 0d
ccg :c.c. guest unwatched €100 5d
bec : break-in comp. centre € 6k 2d
co :corrupt operator €4k 4d

Figure 4.7: The ADTree and node attributes for the gain-admin case study.

Model No reduction Layers Patterns Both % size (|S])

Is| | 1T | t6) 15| 7] t (s) ISl | 1T | t®) S| | 1T |t o
tr. hunters 558 1,452 0.322 278 452 0.129 156 339 0.082 74 89 0.041 13.26% | 26.62% | 47.44%
forestall 77,803 | 215,349 | 542.976 || 39,893 | 67,862 | 150.775 || 7,390 | 22,250 | 39.390 1,845 2,721 4.094 2.37% 4.62% | 24.97%
iot-dev 4,349 8,280 11.280 3,145 4,050 6.510 907 | 2,154 2.207 371 450 0.623 8.53% | 11.80% | 40.90%
gain-admin TO TO TO 52,923 | 94,570 | 416.431

Table 4.3: Efficiency of the pattern- and layer-based reductions in the four case study benchmarks.

4.7.3 Scalable experiments

The second set of experiments aims at evaluating how the two reduction techniques scale with the size
of input ADTrees. To that end, a generator of IMITATOR files was prepared, outputting four variants for
each instance (corresponding to the cases of no reductions, just patterns, just layers, and both reduction

schemes applied together). These scalable ADTrees were parameterised with:

o a fixed number of children for each intermediate node in the ADTree (denoted by # in Table 4.4).
Note that the intermediate nodes generated are all of the AND or the OR type. These two cases lead
to exactly the same results as they exhibit an identical automaton structure. Only synchronisation

labels are inverted;

o the number of nodes in the ADTree (denoted by N in Table 4.4), indicated for information, as this

is entailed by the other numbers;
o the depth of the generated ADTree (denoted by d in Table 4.4);

e the width corresponding to the number of deepmost nodes (denoted by w in Table 4.4). Nodes at
some depth are used as children of nodes at the previous depth, and leaves may be added for the

parent to have the specified number of children.

Figure 4.8 shows an example ADTree obtained using the generator.

61

Figure 4.8: ADTree generated for 2 children per node, of depth 4 and width 6.

4.7.4 Scalable ADTrees: results

The experimental results for scalable ADTrees are reported in detail in Table 4.4, and additionally
depicted in Figures 4.9 and 4.10.

10000000
1000000
100000
10000
1000
100
10 '
4 6 8 4 6 4

1

depth 4 4 6 8 4 6 8 10 4 6 8 10 4 6 8 10 4
width 2 3 3 3 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 8 8 9 10

nodes 7 9 13 15 11 15 17 23 13 17 19 25 15 19 21 27 17 21 23 19 23 21 23

W both S both T m patterns S patterns T M layers S layersT ®MnoreductionS M no reductionT

Figure 4.9: Scalability of reductions for ADTrees with 2 children (missing bars indicate timeouts).

The results confirm previous findings from non-scalable case studies, demonstrating the high comple-
mentarity of the two reductions schemes. Applying the layer-based reduction in conjunction with the
reduced automata patterns can lead to huge gains, e.g. for the variant with 3 children, depth 3 and
width 9, where the resulting state space that is 0.98% the size of the full one (line 27 of Table 4.4).

One interesting observation is that varying depth, for a fixed width and number of children, appears
to have little impact on the reduction, observed e.g. for 2 children and width 6, at lines 3, 6, 10, 14 and
18. On the other hand, changes in the width parameter, at a fixed depth and number of children, has a
huge impact, see e.g. 2 children and depth 3, at lines 2—4.

This can be attributed to increased ADTree width introducing many additional interleavings, which
in turns allows for leveraging the layered reduction to great effect. Meanwhile, increasing ADTree depth

has very limited impact on the number of interleavings.

62

10000000
1000000
100000
10000
1000

100

10

1
depth 6 9 6 9 6 9 6 9 6

width 2 2 3 3 4 4 5 5 6
ADT nodes 10 13 13 16 16 19 19 22 22 25 25

mbothS mbothT MpatternsS mpatternsT MlayersS ®layersT MnoreductionS M no reduction T

Figure 4.10: Scalability of reductions for ADTrees with 3 children (missing bars indicate timeouts).

Model No reduction Layers Patterns Both % size
N|d|w | sl | sl | E sl | T | e e
2 7| 2| 4 185 132 145 296 72 123 54 69 || 29.19% | 37.24% 75.00%
2 9| 3| 4 537 1,698 167 1,210 246 571 190 373 || 32.36% | 40.68% 77.23%
2 13| 3| 6 8,823 35,602 1,043 14,046 2,405 7,584 333 1,802 || 10.00% | 21.84% 36.71%
2 15| 3 | 8 || 34481 | 160,096 || 11,425 14,464 6,734 23,135 1,308 3,439 5.24% | 15.82% 26.84%
2 11| 4| 4 1,825 6,332 1,465 1,628 840 2,458 652 1,680 || 35.72% | 44.50% 77.62%
2 15| 4 | 6 || 26,725 | 124708 || 12,385 50,480 8,184 30,773 3,256 9,167 || 12.18% | 26.28% 39.73%
2 17| 4 | 8 |[103,955 | 549,762 || 34,787 | 156,754 || 22,854 92,393 6,606 17,615 6.35% | 18.99% 28.90%
2 23| 4| 10 71,965 | 237,154 e
2 13| 5| 4 5,603 22,774 4,523 16,942 2,368 10,124 2,228 7,088 || 39.76% | 49.26% 77.68%
2 17| 5 | 6 || 80,687 | 428,086 || 37,667 | 176,722 || 27,926 | 121,887 || 11,258 38,603 || 13.95% | 29.89% 40.31%
2 19| 5 | 8 |[312,889 | 1,858,220 || 105,385 | 540,860 || 77,948 | 362,276 || 22,808 74,986 7.29% | 21.64% 29.26%
2 25| 5| 10 273,484 | 1,128,571
2 15| 6 | 4 || 17,065 79,784 || 13,825 60,128 9,792 40,476 7,608 28,796 || 44.58% | 55.03% 77.69%
2 19| 6 | 6 || 243,085 | 1,446,656 || 114,025 | 606,524 || 95,336 | 473,670 || 38,520 | 155,698 || 15.84% | 33.78% 40.40%
2 21| 6| 8 318,203 | 1,835,398 || 266,084 | 1,397,360 || 78,020 | 303,724 2451% 29.32%
2 27| 6| 10
2 17| 7| 4 I 208,546 | 33432 | 158,372 : 113,996 I 61.86% ‘ 77.69% || 17
2 21| 7| 6 344,123 | 2,049,670 || 325,492 | 1,813,652 611,188 38.23% 40.42%
2 23] 7] 8 1,198,156 \ \ EN
2 19] 8] 4 442,736 || 56.19% | 69.84% T7.69% | 1
2 23] 8] 6 | \ \ |21
2 20| 9| 4 | 2N
2 23| 10| 4 | l BN
3 10] 2] 6 3,803 15,508 2,891 11,436 289 654 250 537 || 6.57% | 8.64% 86.50%
3 13| 2 | 9 | 43387 | 228,362 | 23,779 | 124,754 1,283 3,424 653 1,192 150% | 2.74% 50.89%
3 13| 3 | 6 || 34739 | 186,530 | 26,531 | 138578 1,563 4,700 1,380 4,025 397% | 520% 83.29%
3 16 | 3 | 9 |[392,531 | 2,577,950 || 216,059 | 1,410,182 6,771 23,024 3,846 10,667 || 0.98% | 1.78% 56.80%
3 16| 4] 6 8511 31,912 7,530 27,559 88.47%
3 19| 4] 9 36,777 | 152,390 || 21,117 74,504 57.41% [00
3 19| 5| 6 16,377 | 208,290 || 41,040 | 180,639 88.49%
3 22| 5| 9 200,349 | 978,834 || 115,164 | 491,799 57.48%
3 22| 6| 6 252,729 | 1,322,490 || 223,650 | 1,150,257 88.49%
3 25| 6] 9 R
3 25| 7] 6 ES

Table 4.4: Scalability of the pattern- and layer-based reductions.

4.8 Comparison with POR

Between the pattern-based and layer-based reductions, the former technique is clearly closer to classi-
cal partial order reduction. Firstly, it is more universal of the two. While applied here for automata
corresponding to different types of ADTree components, its approach does not require any particular
prerequisites concerning the patterns. Thus, it could in principle be replicated for translations of other
formalisms to automata networks, and used to employ specific reductions pertaining to the particular

characteristics of different components in the original representation.

63

The other aspect of this similarity to POR is the way pattern-based reduction is applied. Note, in
particular, that reduced automata patterns contain a single path of arbitrarily ordered transitions leading
to the loop transition labelled with A_ ok or A_ nok for every node in the tree. This is precisely what one
would expect, intuitively, from a POR algorithm: since the actions of different child nodes are independent
(cf. Definition 2.2.7), it does not matter in which order they are received by the parent. The difference is
that POR preserves at least one representative of every path in the full model (cf. Section 3.2), whereas the
pattern-based reduction has no such requirement. This yields extra gains, allowing for higher efficiency
of reduction wherever some paths may be completely truncated in accordance with the semantics of their
corresponding ADTree components. Examples of such paths include any sequences where an AND or SAND
node has already received one or more nok messages.

Finally, we also note that much like classical POR is applied on-the-fly while generating the model from
its representation, the full automata patterns also never need to be used, or indeed preserved anyhere,

once the reduced ones are created.

4.9 Summary

In this chapter, we have discussed two specialised method of state and transition space reduction,

tailored specifically to systems that exhibit a tree topology of action synchronisations between local
components. An excellent example of such models are various security scenarios that involve preparations
and interactions between “attacker” and “defender” parties. Originally represented as attack-defence
trees (ADTrees), these scenarios may be converted to an automata-based formalism, which allows for
leveraging the power of verifiers like SPIN or IMITATOR. As a parametric model checker, the latter tool
is of particular interest here, enabling the synthesis of constraints relevant to the two opposing parties.

The translation of ADTree nodes to a network of automata, with one automaton per node, is based
on specific patterns for each type of ADTrees construct. Local transitions of these automata patterns
correspond to the semantics of particular ADTree components, e.g. an AND gate requires synchronisation
from all child nodes, whereas just one suffices for OR etc.

It is at this point that the pattern-based reduction can be applied. The approach consists in replacing
the automata patterns used for the translation with their reduced versions, based on the observation that
in the full patterns, many paths are superfluous and can be safely pruned. This makes it analogous, but
not identical, to classical partial order reduction. While POR always has to preserve a representative
of each path in the full model (cf. Section 3.2), this is not necessarily the case with pattern-based
reduction. Intuitively, based on the corresponding ADTree component’s semantics, certain paths are
known in advance to be “dead ends”, safe to be truncated. For instance, an AND gate does not need to
wait for synchronisation with all child nodes if one was already unsuccessful, since its own resulting state
is already known at this point.

For the purposes of this chapter, we represented the full and reduced automata patterns as Guarded
Update Systems (GUS), and networks obtained via translation from ADTrees as an asynchronous product
of GUS. Note that this formalism does not consider agents yet and will be generalised to Extended AMAS
(cf. Section 5.2.1) in Chapter 5, where the impact of both the number of agents and their assignment to
specific nodes by the opposing coalitions of attackers and defenders will be discussed in detail.

In the context of Chapter 4, however, the GUS formalism is sufficient. We have formalised the notion
of a synchronisation topology, and demonstrated important properties of tree topologies of GUS, such as
those obtained by translating ADTrees. This leads to the second reduction technique, called layer-based
reduction. It exploits the tree topology by enforcing certain restrictions on the asynchronous interleaving
of local transitions from automata patterns, so that nodes do not proceed any further (i.e., hold off

executing any private actions and synchronisation with the parent node) until all nodes in the lower

64

“layer” all have finished and synchronised with their parents. Notably, this approach is fully compatible
and complimentary to the pattern-based reduction, leading to additional gains on top of the latter as

demonstrated by the experimental results.

4.9.1 Related work

ADTrees were originally conceived as Attack Trees [72, 65, 73, 71, 68, 74], and later extended to model
defences and the interactions between opposing parties [75, 76, 77]. They remain a popular, extensively
studied formalism [78, 79, 80], and have been implemented in a number of analysis frameworks based on,
among others, Timed Automata [81, 82], Petri Nets [83], I/O-IMCs [84, 85], Bayesian Networks [86], and
stochastic games [87, 88].

The translation from Attack-Defence Trees to Guarded Update Systems was introduced in [5], while
the pattern-based reduction was proposed, alongside the extension of the asynchronous multi-agent for-
malism to EAMAS, in [4]. However, this work largely focused on the translation itself, demonstrating it
using several case studies and two model checkers: UPPAAL and IMITATOR.

The layer-based reduction was then introduced in [5], which also for the first time investigated the
efficiency of both reduction techniques, applied separately as well as in conjunction.

The tool ADT2AMAS, presented in [89], allows for translating ADTrees, either specified as simple syntax
plain text or manually constructed by the user using a graphical interface, to an extension of the AMAS
formalism that will be introduced and discussed in Chapter 5 of this thesis. Furthermore, ADT2AMAS
creates ITEX files that can be compiled for a graphical overview of the transformation, and integrates

well with IMITATOR, automatically generating input for the latter.

65

Chapter 5

Minimal Agent Scheduling

The material in Chapter 5 is based on the following papers to which the author of this thesis has

contributed:

[4] J. Arias, C. Budde, W. Penczek, L. Petrucci, T. Sidoruk, and M. Stoelinga, “Hackers vs. Secu-
rity: Attack-Defence Trees as Asynchronous Multi-agent Systems,” in Proceedings of ICFEM 2020.
Springer, 2020, pp. 3-19

[5] L. Petrucci, M. Knapik, W. Penczek, and T. Sidoruk, “Squeezing State Spaces of (Attack-Defence)
Trees,” in Proceedings of ICECCS 2019. 1EEE, 2019, pp. 71-80

[6] J. Arias, L. Petrucci, L. Masko, W. Penczek, and T. Sidoruk, “Minimal Schedule with Minimal
Number of Agents in Attack-Defence Trees,” in Proceedings of ICECCS 2022. 1EEE, 2022, pp.
1-10

The author’s involvement in these works includes most of the material featured in [6], in particular
proposing and proving the correctness of an algorithm synthesising an optimal schedule for a minimal
number of agents given an ADTree. As the paper [6] is based on previous work, it naturally refers the

reduction techniques proposed and proved in [5], see Chapter 4.

5.1 Introduction

We have discussed both the general-purpose technique of partial order reduction (Chapter 3), as well as
specialised methods that trade universal applicability for potentially higher efficiency in a smaller class
of models that exhibit particular characteristics of their synchronisation topology (Chapter 4). In both
cases, reductions were considered within the context of a preexisting representation of a model, with a
fixed number of (often symmetrical) local components corresponding to individual agents.

The main factor behind the state-space explosion in models considered here is the number of com-
ponents that comprise their representations, particularly so with the asynchronous execution semantics
of TIS (cf. Definitions 2.1.3 and 2.3.1). Note that the interpreted interleaved system is, in most cases,
exponentially larger than its corresponding AMAS [1]. With that in mind, it is clear that in any practical
applications a different kind of reduction is equally essential, one that aims to minimise the number of

agents in the model.

67

5.2 Representing agents in security scenarios

Previously, in Chapter 4, we considered specialised model reductions applicable to networks of Guarded
Update Systems (GUS) exhibiting a tree topology of synchronisation. Note that although this formalism
quite closely resembles the networks of automata of AMAS, GUS does not cater for or represent agents.
In this chapter, we extend the prior approach to reason about agents in attack-defence security scenarios.

To that end, we augment the original definitions of AMAS and IIS from Chapter 2 as follows.

5.2.1 Extending AMAS to represent ADTrees

In order to translate ADTrees to AMAS formalism, it is necessary to extend the latter so as to represent

elements inherent to ADTrees, in particular node attributes and Boolean conditions.

Definition 5.2.1 (Extended AMAS [4]). An Extended Asynchronous Multi-agent System (EAMAS)
is an AMAS, in which each local transition function t € LT = |J,cxTi has a finite set of variables
ATy = {v},...,vF} (attributes) over a domain D; = d} x --+ x d¥.

Let AT = U,ep7 ATy and D = [],cr Di. Let Guards be the set of formulas of the form ~ 0,
where 8 is a linear expression over attributes of AT and ~e{<,<,=,>,>}. Let MSG be the set of all
messages, FUN be all functions taking arguments in AT, and EXP(AT, FUN) be linear expressions over
AT and FUN. FEach transition t € LT has associated:

o a message fi,(t) € ({!,7} x MSG) u {1}, which indicates whether transition t sends (marked with !)

or recetves () a message m € MSG = {ok, nok}, or does not synchronise (L);
o a guard fy(t) € Guards, which constrains transitions;

e an update function f;: ATy — EXP(AT, FUN), which states how taking a transition modifies the

associated attributes.

Likewise, the interleaved interpreted system is extended to account for attributes, messages, guards,
and update functions added in EAMAS.

Definition 5.2.2 (Extended IIS [4]). Let PV be a set of propositional variables, v: AT — D a valuation
of the attributes, and vy an initial valuation. An extended interleaved interpreted system (EIIS) is an
EAMAS extended with the following elements:

e a set of global states St € Ly x --- x L, x D;
e an initial state so = {(t1,...,tn), Voy € St;
e @ valuation function V : St — 27V

e a (partial) global transition function T' S St x Evt x St, such that {(l1, ..., l,,v),e,(I},...,ll,,v'))€e

»ino

T iff either of the following two conditions is satisfied:
A) |Agent(e)l = 1 A 3, = (lLi,e,l;) € T; for i € Agent(e) A Vk e A\{i} Iy =1, ~
viEfolt) A v =vV[AT,];
B) 3,5 € Agent(e) A It = (li,eli) € T, A~ Ft; = (lj,el;) € Tj, such that fn(t;) =

(,m) A fi(t;) = (?,m); and
Vke A\{i,j} U =1,; and

v fo(ti) A fqt;); and

68

v = v[AT][ATy,], where AT, and ATy, are disjoint,

where v[ATy, [[ATy,] indicates the substitution of attributes in the valuation v according to transitions t;
and t;, that is

v = v[A vy, = fti(vti)][A vy, = ftj(vtj)].

v, eATti vt eAth

Note that in the above definition, we make an explicit assumption that events are either private or
shared between exactly two agents. This is consistent with the tree topology of EAMAS models obtained
from ADTrees, where synchronisation always occurs on events shared by a pair of nodes, i.e. the parent
and the child. Indeed, the purpose of extending the AMAS formalism to EAMAS is specifically to
represent such models. Applying it in more general scenarios would require changing the above definition

of the global transition function accordingly.

5.2.2 Translation to EAMAS

The translation to EAMAS works exactly as in Section 4.4, except each node of the original ADTree,
replaced with the corresponding automaton pattern from Table 4.2, now represents a single agent. The
execution semantics for the resulting EAMAS is provided by EIIS. In particular, shared events allow
to capture the communication between nodes: parents and children nodes need to synchronise whenever
the latter report the success or failure of their action.

We now prove that the transformation of ADTrees to EAMAS based on the patterns from Table 4.2

is both complete and sound.

Theorem 5.2.3 (Completeness of the ADTree to EAMAS transformation [4]). Let ay,...,an, A be
ADTree nodes such that ai,...,an are the children of the gate A, and let My, ,..., M,,, M4 be their
respective EAMAS models. Let A succeed when a;,---a;, finalise (succeeding or failing), in that order.
If the EAMAS models Maij finalise in the same order, then Ma transits from its initial state ly to its
final state 1 4.

Proof. First note that if node x finalises, its EAMAS model will send either !z_ ok or lx__nok. Moreover,
due to the self-loops in the end states, this happens infinitely often. Thus, if nodes a;, a;, - - - a;,, finalise,
actions la;, ok, la;,_ok,..., la;, ok (or the corresponding la,_nok) will be signaled infinitely often.
By hypothesis, gate A succeeds when a;,---a,,, finalise in that order. All patterns in Table 4.2 have
_ok (or ?a,_nok) that take it from Iy to 4. By the
first argument, all actions in the sequence of M4 are signaled infinitely often. M4 will then transit from
lo to l4. O

(at least) one sequence of actions ?a;, ok---7a;

This covers expected actions that a parent must receive from its children to achieve its goal. For
unezxpected sequences of signals, a parent may not react to all information from its children, e.g. a CAND
gate that after 7a_ ok receives (unexpectedly) ?d_ok. In such scenarios, the model cannot reach its final
state, entering a deadlock. This means that the model of A cannot signal its !A_ ok action. Notice that
this is exactly what should happen, because such unexpected sequences actually inhibit the goal of node
A. To formally complete this argument, we now prove that the transformations of Table 4.2 are sound.
That is, all paths (of actions) that make the model of a node A signal !A_ ok, correspond to an ordered

sequence of finalising children of A that make it reach its goal.

Theorem 5.2.4 (Soundness of the ADTree to EAMAS transformation [4]). Let aq,...,an, A be ADTree
nodes such that ai,...,a, are the children of the gate A, and let M,,, ..., M,,,Ma be their respective

EAMAS models. Let the sequence of actions Ta;, $;,Tai, Si, -+ 7a;, s;, take Ma from its initial state

m

69

lo to its final state la, where s; € {ok,nok}. Then, the corresponding ordered success or fatlure of the

children a;,,...,a; make the ADTree gate A succeed.

m

Proof. First, observe that the reduced models in Table 4.2 are subsets of the full models—which consider
all possible interleavings of synchronisation messages from child nodes. Thus, any path 7 in a reduced
model also appears in the corresponding full model. Moreover, inspecting Tables 4.1 and 4.2 shows that,
in the full model M4 of gate A, a path of actions ?a; s; (from children a; of A) that transit from Iy to
L4, encodes the ordered finalisation of these children that make the ADTree A succeed. Our hypothesis
is the existence of a path 7 of actions in (the reduced model) My, that take this EAMAS from Iy to [4.
By the first argument, 7 is also a path in (the full model) M4. By the second argument, 7 encodes the

ordered finalisation of children ¢ of A that make this gate succeed. O

5.3 Minimising number of agents

Translating attack-defence trees to the multi-agent formalism of extended AMAS has several major
advantages. The first and most obvious one is being able to leverage the vast array of tools and methods
that have been developed for the formal verification of multi-agent systems over the years. However, the
inclusion of agents additionally allows for reasoning about the ADTree security scenarios on an entirely
new level, i.e. considering the size of opposing coalitions, as well as specific assignments of individual
agents to specific tasks corresponding to nodes of the original ADTree. Clearly, these aspects affect
both the feasibility of attack or defence in considered scenarios and the performance metrics quantified by
attributes such as attack/defence time or their associated financial cost. On the other hand, increasing the
number of agents has severe consequences not only because the extra resource requirements it represents
in the real world, but also from the verification standpoint, where each agents corresponds to a separate
automaton in the EAMAS, leading to significantly larger models. This leads to the very interesting,
clearly relevant, and non-trivial problem of optimal scheduling of agents in attack-defence scenarios. In
other words, the problem is to obtain an assignment of agents to ADTree nodes, such that the attack is
achieved in the lowest possible time using the minimal number of agents required.

In this section, we will present an algorithm that synthesises such an assignment for a given ADTree.
We begin by describing the preprocessing phase, where the input tree will be normalised and transformed

into a directed acyclic graph (DAG).

5.3.1 Normalising ADTrees

The preprocessing of the input ADTree involves transforming it into a DAG, where all actions are of the
same duration. This is achieved by splitting nodes into sequences of actions with normalised duration
of one time unit, mimicking the scheduling enforced by ADTrees sequential gates, and considering the
different possibilities of defences. To that end, we introduce a sequential node SEQ, which only waits for
some input, processes it and produces some output. It is depicted as a lozenge (see nodes N7 and N in
Figure 5.1).

In what follows, we assume that t,.;: = gcf(tn,), i.e. one time unit is the greatest

AN A
common factor of time durations across all nodes in the Iinput ‘ADTree. By time slots, we refer to
fragments of the schedule whose length is ¢,,;. That is, after normalisation, one agent can handle
exactly one node of non-zero duration within a single time slot.

Note that in order to ensure backwards traceability after synthesising the optimal assignment of
agents, all node labels are preserved. Wherever applicable, their new versions are appended with primes

or indices.

70

Since all ADTree attributes are optional, it may be the case that one or more nodes have no time
parameter set, and are thus considered to have a duration of 0. Such nodes play essentially a structuring

role. Because they do not take any time, the following proposition is straightforward.

Proposition 5.3.1 (Scheduling zero-duration nodes [6]). Nodes with duration 0 can always be scheduled
immediately before their parent node or after their last occurring child, using the same agent in the same

time slot.

Proof. Straightforward, as such nodes do not take any time to process, thus not affecting the schedule

when assigned together with the parent or child. O]

Preprocessing introduces nodes similar to SEQ but with 0 duration, called NULL and depicted as
trapeziums (Fig. 5.2).
The first pre-processing step prior to applying the scheduling algorithm normalises the time parameter

of nodes.

Proposition 5.3.2 (Time normalisation [6]). Any node N of duration txy = n X typis,n # 0 can be
replaced with an equivalent sequence consisting of a node N' (differing from N only in its 0 duration)
and n SEQ nodes Ny, ..., N, of duration t,;.

Proof. Consider a node N’ identical to N except for its duration ¢y = 0. Let N’ be followed by a
sequence of n SEQ nodes, each with duration t,,;. Together, N’ and the SEQ nodes form a sequence,
and ty =ty +tn, + -+ 1N, = n X typi. Furthermore, since N’ only differs from N in its duration,
the conditions on their children are the same, and are evaluated at the same time (i.e. immediately
after synchronisation with a sufficient number of children, and before any SEQ node is processed). Thus,
replacing N with the sequence N’ N7 ... N, preserves the behaviour and duration, independently of the

number of agents processing nodes. O]

Example 5.3.3. Figure 5.1 shows the transformation of an AND node N with duration ty = 2t,pi:. Both

Ny and Ny are of duration ty,;, while N' has a null duration.

<D
O

It rt 1t rt

Figure 5.1: Normalising AND node N (tn = 2tynit, tn = 0).

Sequential nodes SAND enforce some scheduling. These are transformed into a sequence containing
their subtrees and NULL nodes.

Proposition 5.3.4 (Scheduling enforcement [6]). Any SAND node N with children subtrees Ty, ..., T,
can be replaced with an equivalent sequence Ty, Ny, 1o, ..., Npn_1, Ty, Ny, where each N; is a NULL
node, its input is the output of T; and its outputs are the leaves of T;11 (except for N, which has the

same output as N if any).

71

Proof. Each NULL node N, occurs after its input and before its output, so the sequentiality is preserved:
T; occurs before all leaves of T;,1, which in turn occur before any other action in 7;.1, and N,, occurs
last. Moreover, since NULL nodes have 0 duration, they do not impact the timing. Finally, note that since
time has been normalised, it holds that ¢y, = 0. Hence, the transformation preserves both the order of

actions and the timing.]

Example 5.3.5. Consider the SAND node N depicted in Figure 5.2 on the left, where all other nodes
have already been processed by the time normalisation. The transformation of Proposition 5.5.4 produces
the DAG on the right side of Figure 5.2, where subtrees A, B and C' occur in sequence, as imposed by the

NULL nodes Ny and No between them, and then action N3 occurs.

Figure 5.2: Normalising SAND node V.

5.3.2 Handling defences and conditional branches

The scheduling we are seeking to obtain will guarantee the necessary attacks are performed. Hence, when
dealing with defence nodes, we can assume that all attacks are successful. However, they may not be
mandatory, in which case they should be avoided so as to obtain a better scheduling of agents.

Taking into account each possible choice of defences will lead to as many DAGs representing the
attacks to be performed. This allows for answering the question: “What is the minimal schedule of
attacker agents if these defences are operating?”

Composite defences. Defences resulting from an AND, SAND or OR between several defences are operating
according to the success of their subtrees: for AND and SAND, all subtrees should be operating, while only
one is necessary for OR. This can easily be computed by a boolean bottom-up labelling of nodes. Note that
different choices of elementary defences can lead to disabling the same higher-level composite defence,
thus limiting the number of DAGs that will need to be considered for the scheduling.

No Defence nodes (NODEF). A NODEF succeeds if its attack succeeds or its defence fails. Hence, if
the defence is not operating, the attack is not necessary. Thus, the NODEF node can be replaced by a
NULL node without children, and the children subtrees can be deleted. On the contrary, if the defence is
operating, the attack must take place. The defence subtree is deleted, while the attack one is kept, and
the NODEF node can be replaced by a NULL node, as pictured in Figure 5.3.

Counter Defence (CAND) and Failed Reactive Defence (SCAND) nodes. A CAND succeeds if its attack is

successful and its defence is not. A SCAND behaves similarly but in a sequential fashion, i.e. the defence

72

takes place after the attack. In both cases, if the defence is not operating, its subtree is deleted, while
the attack one is kept, and the CAND (or SCAND) node can be replaced by a NULL node, as was the case
in Figure 5.3c. Otherwise, the CAND (or SCAND) node is deleted, as well as its subtrees. Moreover, it
transmits its failure recursively to its parents, until a choice of another branch is possible. Thus, all
ancestors are deleted bottom up until an OR is reached.

Thus, we have a set of DAGs with attack nodes only.

ANIAN /N

(a) NODEF node (b) Case d fails (c) Case d operates

Figure 5.3: Handling NODEF A.

Conditional choices in OR nodes. OR nodes give the choice between several series of actions, only
one of which will be chosen in an optimal assignment of events. However, one cannot simply keep the
shortest branch of an OR node and prune all others. Doing so minimises attack time, but not necessarily
the number of agents. In particular, a slightly longer, but narrower branch may require fewer agents
without increasing attack time, provided there is a longer sequence elsewhere in the DAG. Consequently,
only branches that are guaranteed not to lead to an optimal assignment can be pruned, which is the case
when a branch is the longest one in the entire graph. All other cases need to be investigated, leading to

multiple variants depending on the OR branch executed, similar to the approach for defence nodes.

5.3.3 Example of preprocessing

Figures 5.4 and 5.5 detail the preprocessing of the treasure hunters example step by step. The time
unit is one minute. Long sequences of SEQ are shortened with dotted lines. Note that when handling
the defence, at step 3, we should obtain two DAGs corresponding to the case where the defence fails
(see Figure 5.5b), or where the defence is successful. This latter case leads to an empty DAG where no
attack can succeed. Therefore, we can immediately conclude that if the police is successful, there is no

scheduling of agents.

8

AR
&[]
D
®

&
&

CRVAVAV

O <
O &>

Figure 5.4: Treasure hunters ADTree: time normalisation.

depth level

(a) Scheduling (b) Handling (c) Applying Algs. 1-2, handling OR
enforcement failed defence nodes

Figure 5.5: Treasure hunters ADTree: final preprocessing steps (left, middle) and initial part of the main
algorithm (right).

5.4 Synthesising the minimal assignment

Following the preprocessing steps described in the previous section, the input ADTree has been trans-
formed into a set of DAGs, each of which corresponds to one particular configuration of defence nodes’
outcomes and choices made in OR branches in the original ADTree. Note that as per Section 5.3.1, at
this stage all DAG nodes are either (i) a leaf, or of type AND, OR, or NULL, all with duration 0 or (ii) of
type SEQ with duration ¢,,;. Their branches mimic the possible runs in the system.

Thus, the input of the algorithm synthesising the minimal assignment using the minimal number of
agents is a set of DAGs. For each of these graphs,

The algorithm’s input is a set of DAGs preprocessed as described in Section 5.3.1, corresponding to
possible configurations of defence nodes’ outcomes and choices of OR branches in the original ADTree. For
each of these graphs, n denotes the number of SEQ nodes (all other ones have 0-duration). Furthermore,
nodes (denoted by N) have some attributes: their type, as well as four integers depth, level, agent and
slot, all initially with value 0. The values of depth and level denote, respectively, the height of a node’s
tallest subtree and the distance from the root (both without counting the zero duration nodes), while
agent and slot store a node’s assignment in the schedule.

We first compute the nodes’ depth in Section 5.4.1, then compute the level of nodes in Section 5.4.2,
discuss the theoretical upper and lower bounds on the number of required agents in Section 5.4.3, and

finally compute an optimal scheduling in Section 5.4.4.

74

5.4.1 Depth of nodes

Starting from the root, the procedure DEPTHNODE (Algorithm 1) explores the DAG in a DFS (depth first

search) manner. During backtracking, i.e. starting from the leaves, depth is computed for the different

types of nodes as follows:

LEAF node: After the time normalisation, a leaf node takes 0 time. It may still be an actual leaf,
in which case its total duration is also 0, since it has no children (not satisfying condition at 1. 3).
Alternatively, it may have a child node due to the scheduling enforcement, and then its time is the

same as the one of its only child (1. 10).

SEQ node: Its duration is one ¢, which must be added to the duration of its only child to obtain

the minimum time of execution from the start (1. 4-5).

AND node: All children of an AND node must be completed before it occurs. Therefore, its minimal

time is the maximum one of all its children (1. 6-7).

OR node: Only one child must complete for the OR node to happen. Its time is thus the minimal
one of all its children (1. 8-9).

NULL node: Note that, by construction, a NULL node may have several parents but a single child.

Its duration being null, its time is the same as the one of its only child (1. 10).

Note that the condition at 1. 2 avoids a second exploration of a node which has already been handled

in another branch.

Algorithm 1: DEPTHNODE(node) [6]

[

© W0 N O ;AW

10

for N € child(node) do
| if N.depth = 0 then DEPTHNODE(N)

if

child(node) # & then
if node.type = SEQ then

| node.depth — N.depth + 1, s.t. {N} = child(node)
else if node.type = AND then

| node.depth — max({N.depth | N € child(node)})
else if node.type = OR then

| node.depth — min({N.depth | N € child(node)})
else node.depth < N.depth, s.t. {N} = child(node)

5.4.2 Level of nodes

Levels are assigned recursively, starting with the root, using a DFS. The procedure LEVELNODE (Al-

gorithm 2) computes nodes’ levels. It first assigns the node’s level (1. 1) according to the call argument.

Note that in case of multiple parents (or ancestors with multiple parents), the longest path to the root

is kept.

Algorithm 2: LEVELNODE(node,) [6]

1 node.level < max(l, node.level)
2 for N € child(node) do

3
4

L

if node.type = SEQ then LEVELNODE(N,! + 1)
else LEVELNODE(N,I)

0]

Algorithm 3: MINSCHEDULE(DAG__set) [6]

1 oulput = &
2 while DAG_set # ¢f do

3 Pick DAG € DAG_set

4 if DAG.n =0 then continue >Skip empty DAGs
5 DEPTHNODE(root(DAG)) > Compute depth of nodes
6 DAG « DAG\{N | —=N.keep}

7 LEVELNODE(root(DAG),0) = Compute level of nodes
8 slots « root(DAG).depth

9 lower _bound « [24C:n] 1
10 maz__agents «— max;(|{N : N.type = SEQ A N.level = j}|) ©=Max. level width (concur.

SEQ nodes)

11 upper__bound < max__agents
12 curr__output =
13 while (upper__bound — lower__bound > 1) do

14 agents - lO’LU@’f’_bOUTLd + lupper_bound;lower_boundJ

15 (candidate, n__remain) < SCHEDULE(DAG, slots, agents)

16 if n__remain = 0 then >Candidate schedule 0K
17 upper__bound «— agents

18 L curr__output < candidate

19 else lower__bound = agents >Candidate schedule not OK
20 if upper__bound = max__agents then

21 L (curr__output,) «— SCHEDULE(DAG, slots, max__agents)
22 ZEROASSIGN(DAG)
23 outpul < outpul U curr__output
24 DAG__set «— DAG _set\DAG

25 return output

5.4.3 Bounds on the number of agents

The upper bound on the number of agents is obtained from the maximal width of the preprocessed DAG,
i.e. the maximal number of SEQ nodes assigned the same value of level (that must be executed in parallel
to ensure minimum time).

The minimal attack time is obtained from the number of levels [in the preprocessed DAG. Note that
the longest path from the root to a leaf has exactly [nodes of non-zero duration. Clearly, none of these
nodes can be executed in parallel, therefore the number of time slots cannot be smaller than [. Thus, if
an optimal schedule of [x t,,; is realisable, the n nodes must fit in a schedule containing [time slots.
Hence, the lower bound on the number of agents is [7]. There is, however, no guarantee that it can be
achieved, and introducing additional agents may be necessary depending on the DAG structure, e.g. if

there are many parallel leaves.

5.4.4 Minimal schedule

The algorithm for obtaining a schedule with the minimal attack time and also minimising the number
of agents is given in Algorithm 3. Input DAGs are processed sequentially, a schedule returned for each
one. Not restricting the output to the overall minimum allows to avoid “no attack” scenarios where the
time is 0 (e.g. following a defence failure on a root NODEF node). Furthermore, with information on the
repartition of agents for a successful minimal time attack in all cases of defences, the defender is able to
decide which defences to enable according to these results (and maybe the costs of defences).

The actual computation of the schedule is handled by the function SCHEDULE (Algorithm 4). Starting

from the root and going top-down, all SEQ nodes at the current level are added to set S. The other nodes

76

Algorithm 4: SCHEDULE(DAG, slots, agents) [6]

[< 0, slot « slots, S «— &, n_remain «— DAG.n
while n__remain > 0 and slot > 0 do
agent «— 1
S «— S U {N | N.type = SEQ A N.level = [}
if Anes, s.t. N.depth < slots — slot then

L return J, n_ remain

[=2 A BNV R

7 while agent < agents and S # & and

(Pick N € S, s.t. VniesN.depth = N'.depth A Yni.N' stot=siot N ¢ ancestors(N)) # & do
N.agent < agent
N.slot « slot

10 agent < agent + 1, n__remain < n__remain — 1

11 S — S\{N}

12 RESHUFFLESLOT(slot, agent — 1)
13 l < 1+1,slot < slot — 1

14 output — |Jyepacti(IN.agent, N.slot)}
15 return output, n_ remain

at that level have a null duration and can be scheduled afterwards with either a parent or child.
An additional check in 1. 5 ensures that non-optimal variants (whose longest branch exceeds a previously
encountered minimum) are discarded without needlessly computing the schedule. Nodes in S are assigned
an agent and time slot, prioritising those with higher depth (i.e. taller subtrees), as long as an agent is
available. Assigned nodes are removed from S, and any that remains (e.g. when the bound was exceeded)
is carried over to the next level iteration. Note that at this point it is possible for a parent and child
node to be in S concurrently, but since higher depth takes precedence, they will never be scheduled in the
wrong order. In such cases, an extra check in the while loop avoids scheduling both nodes to be executed
in parallel.

Algorithm 4 calls function RESHUFFLESLOT after the complete assignment of a time slot at 1. 12 to
ensure consistent assignment of sub-actions of the same ADTree node. Note that depending on depth, a
sub-action may be moved to the next slot, creating an interrupted schedule where an agent stops an action
for one or more time units to handle another. Alternatively, agents may collaborate, each handling a
node’s action for a part of its total duration. Such assignments could be deemed unsuitable for specific
scenarios, e.g. defusing a bomb, in which case manual reshuffling or adding extra agent(s) is left to the
user’s discretion.

At this point, either the upper or the lower bound on the number of agents is adjusted, depending on
whether the resulting schedule is valid (that is, there are no nodes left to assign at the end). Scheduling is
then repeated for these updated values until the minimal number of agents is found (i.e. the two bounds
are equal).

After the complete computation for a given DAG, 1. 22 calls ZEROASSIGN in order to obtain assign-
ments for all remaining nodes, i.e. those of zero duration. Functions RESHUFFLESLOT and ZEROASSIGN
are detailed in Sections 5.4.5 and 5.4.6, respectively.

Although this algorithm assumes the minimal time is of interest, it can be easily modified to increase
the number of time slots, thus synthesising the minimal number of agents required for a successful attack

of any given duration.

5.4.5 Uniform assignment for SEQ nodes

A separate subprocedure, given in Algorithm 5, swaps assigned agents between nodes at the same level

so that the same agent handles all SEQ nodes in sequences obtained during the time normalisation step

7

(i.e. corresponding to a single node in the original ADTree).

Algorithm 5: RESHUFFLESLOT(slot, num__agents) [6]

1 for agent € {1..num__agents} do

2 current__node «— N, s.t. N.agent = agent A N.slot = slot

3 par__agent «— parent(current__node).agent

4 if par__agent # agent A par__agent # 0 then

5 if AN’ # current__node, s.t. N'.agent = par__agent A N'.slot = slot then

6 N'.agent « agent >Swap with N’ if it exists
7 L N'.slot « slot

8 current__node.agent «— par__agent

9 current _node.slot < slot

Proposition 5.4.1 ([6]). Reshuffling the assignment by swapping the agents assigned to a pair of nodes

in the same slot does not affect the correctness of the scheduling.

Proof. First, note that the procedure does not affect nodes whose parents have not yet been assigned
an agent (1. 4). Hence, reshuffling only applies to SEQ nodes (since the assignment of 0 duration nodes
occurs later in the main algorithm MINSCHEDULE). Furthermore, changes are restricted to pairs of nodes
in the same time slot, so swapping assigned agents between them cannot break the execution order and

does not affect the schedule correctness. O

5.4.6 Assigning nodes without duration

After all non-zero duration nodes have been assigned and possibly reshuffled at each level, Algorithm 6
handles the remaining nodes.

Our choice here stems from the ADTree gate the node originates from. We first assign zero-duration
nodes to the same agent and the same time slot as their parent if the parent is a SEQ node (1. 2-6).

Of the remaining ones, nodes of type NULL, OR and LEAF get the same assignment as their only child
if any, or as their parent if they have no child (1. 8-19). The latter case may happen for NULL when
handling defences as in e.g. Figure 5.3b, and for LEAF nodes with originally a null duration. AND nodes
are assigned the same agent and time slot as the child that occurs last (1. 20-30).

Note that in all cases the agents (and time slots) assigned to zero duration nodes are the same as

those of their immediate parents or children. Hence, no further reshuffling is necessary.

Proposition 5.4.2 ([6]). Adding nodes of zero duration to the assignment in Algorithm 6 does not affect

the correctness of the scheduling.

Proof. Since all remaining nodes have zero duration, no extra agents or time slots are necessary. In all
cases, the zero duration node is assigned with either its immediate parent or child, preserving the correct

execution order. Consider possible cases at each step of the algorithm:

e 1. 2-6: Nodes with a SEQ parent are the final nodes of sequences obtained during time normalisation.
Clearly, they can be assigned the same agent and time slot as their immediate parent without

affecting the schedule.

e 1. 8-19: OR nodes: in each DAG variant (see Section 5.3.2), they are guaranteed to have a single
child node and can be scheduled together with this child provided the corresponding sub-DAG has

some duration.

78

Algorithm 6: ZEROASSIGN(DAG) [6]

o A W N

o

10
11
12

13
14
15
16
17
18
19

20
21
22
23
24

25
26
27
28
29
30

S «— {N | N.agent = 0} >Nodes not assigned yet
for node € S do

if N € parent(node) A N.type = SEQ then
node.agent < N.agent
node.slot < N.slot
S — S\{node}

while S # J do

for node € S s.t. node.type € {NULL, OR, LEAF} do
if N.agent # 0 s.t. N € child(node) then
node.agent < N.agent

node.slot « N.slot
S «— S\{node}
if (child(node) = &
v(N.depth =0 s.t. N € child(node))) then
parent__node < N € parent(node) s.t. ¥ nicparent(node)N-slot < N'.slot
if parent__node.agent # 0 then
node.agent < parent__node.agent

node.slot < parent__node.slot
S — S\{node}

for node € S s.t. node.type = AND do

if node.depth = 0 A parent(node).agent # 0 then
node.agent < parent(node).agent
node.slot < parent(node).slot

S — S\{node}

if node.depth # 0

AY Nechild(node) (N-agent # 0 v N.depth = 0) then
child_node < N € child(node) s.t. Vniechitd(node)IN-slot = N'.slot
node.agent < child__node.agent

node.slot «— child_node.slot
S — S\{node}

NULL and LEAF nodes have a single child if any and are handled analogously to OR, being assigned
the same agent as their child. Note that LEAF nodes can have gotten this child during e.g. the

scheduling enforcement step (see Proposition 5.3.4).

OR, NULL and LEAF nodes with no child or a child sub-DAG with no duration are assigned as their
parent. If a NULL node has several parents due to sequence enforcement, it gets the same assignment

as its parent that occurs first.

1. 20-30: In case all children are never able to get an assignment, i.e. they are subtrees of null

duration and can be identified with a depth 0, the AND node gets the same assignment as its parent.

Otherwise, AND nodes are also scheduled together with one of their children. Note that the AND
condition is satisfied only if all its longest children have completed, therefore the one that occurs last,
i.e. has the biggest time slot, is chosen (1. 20-30). Furthermore, note that since children subtrees
with a null duration are discarded, such children of the AND node have already been assigned an

agent at that point.

The pathological case of a full ADTree with no duration is not handled since the algorithm is not called
for such DAGs. O

79

5.4.7 Complexity and correctness
We now consider the algorithm’s complexity and prove that it achieves its intended goal.

Proposition 5.4.3 ([6]). Algorithm 3 is in O(kn?logn), where k is the number of input DAG variants,

and n their average number of nodes.

Proof. Initiallyy, DEPTHNODE, and LEVELNODE each visit all DAG nodes, hence 2n operations. In
SCHEDULE, the outer while loop (. 2) iterates over nodes of non-zero duration; its inner loop and
RESHUFFLESLOT both operate within a single time slot. Overapproximating these numbers by n puts
the function at no more than n? operations. The schedule computation is repeated at most logn times
in a divide-and-conquer strategy (1. 13).

Finally, ZEROASSIGN visits all zero duration nodes (again overapproximated by n), performing at
most 2n iterations for each, for a total of 2n2. Thus, the complexity of processing a single DAG is
O(2n + n%logn + 2n?) = O(n?logn), and O(kn?logn) for the whole input set.

Note that as per Section 5.3.1, the preprocessing step introduces a number of additional nodes in
resulting DAGs. However, since that factor depends on the structure and attributes of the original

ADTree rather than its size, it is treated as a constant in the consideration of complexity. O]

Thus, while the complexity of the scheduling algorithm itself is quadratic, it is executed for k input

DAG variants, where k is exponential in the number of OR and defence nodes in the ADTree.

Proposition 5.4.4 ([6]). The assignments returned by Algorithm 3 are correct and use the minimal

number of agents for each variant DAG € DAG _set to achieve the attack in minimal time.

Proof. Let L denote the number of levels in an input variant DAG € DAG__set, and L; the set of nodes
at the i-th level. We need to show that the resulting assignment is 1) correct, and 2) optimal in both
schedule length and number of agents.

1) SCHEDULE assigns time slot 1 to leaves at the bottom level, subsequent slots to their ancestors,
and finally the last one L to the root node. Thus, the execution order of nodes in DAG is correct.
Furthermore, it is guaranteed that there are enough agents to handle all nodes by increasing agents
accordingly after an invalid assignment with unassigned nodes is discarded (1. 14), and that any nodes
executed in parallel (i.e. at the same level) are assigned to different agents (1. 10). Note also that the
while loop at 1. 13 of MINSCHEDULE is guaranteed to terminate as the value of agents is refined from its
theoretical bounds in a divide-and-conquer strategy.

2) Since the number of time slots is fixed at L (Algorithm 3, 1. 8), i.e. the minimal value that follows
directly from the structure of DAG as its longest branch (note that L = root(DAG).depth), it follows
that the total attack time L X t,,; is always minimal.

To show that the number of agents is also minimal, consider the assignment of nodes at each level L;
of DAG. The case for the top level Ly is trivial: it only contains the root node, which cannot be executed
in parallel with any other and thus can be assigned to any agent. By induction on subsequent levels L;,
we can show agents are also optimally assigned at each one. Suppose that the assignment of agents and
time slots for all nodes down to and including level L; is optimal. At L;,1, there are two possibilities
to counsider. If |L;+1| < agents, some agents are idle in this time slot. However, this assignment cannot
be improved upon: note that any lower values of agents would have already been checked during earlier
cycles of the while loop (1. 13), and found to produce an invalid schedule where some nodes are left
without any agent asssigned (1. 16).

Conversely, if |L;+1| > agents, some nodes will be carried over to L;io. Similarly, it follows from
the divide-and-conquer scheme in which the final value of agents is obtained (1. 13) that decreasing the

number of agents further is impossible without adding an extra slot instead.

80

Therefore, the assignment up to level L;,; cannot be improved and is optimal for a schedule containing
L time slots. Note that subsequently executed subprocedures RESHUFFLESLOT and ZEROASSIGN do not
affect this in any way, since neither adds extra agents or time slots.

Thus, for any DAG € DAG__set, schedule length is fixed at its theoretical minimum, and the optimality
of agent assignment for this minimal length follows from the fact time slots are filled exhaustively wherever
possible, but using the lowest number of agents that does not leave unassigned nodes (i.e. an invalid
schedule). Since all input DAG variants are equivalent to the original ADTree w.r.t. scheduling (by
Propositions 5.3.1, 5.3.2 and 5.3.4), it also holds that the assignment is optimal for the original ADTree.

O

5.4.8 Example of scheduling

We now apply these algorithms to the treasure hunters example. Figure 5.5¢ shows the output of the
three initial subprocedures. The depth of nodes assigned by Algorithm 1 is displayed in green. The
branch corresponding to attack e has been pruned as per Section 5.3.2. Levels assigned by Algorithm 2

are displayed in blue. Finally, the agents assignment computed by Algorithm 3 is shown in Table 5.1.

agent
slot 1 2

125 hs, GA”, TF,, TS/
124 hy
123 hy, b’
122 ST,, TF
121 ST,, ST/
120 f120 beo
61 61 by, b/
60 feo

1 £y, £

Table 5.1: Treasure hunters ADTree: assignment of Algorithm 3.

5.5 Experimental results

The algorithm presented in this chapter has been implemented in ADT2AMAS, an open source tool written
in written in C++17. Input ADTrees can be loaded from plain text files using a simple syntax, or specified
manually by the user via an intuitive graphical interface. In addition to translating them to the EAMAS
formalism and synthesising an optimal schedule for the minimal number of agents, the tool additionally
allows for exporting the algorithm’s intermediary steps (i.e. the preprocessing detailed in Section 5.3.1)
as WTEX figures for easy visualisation of the transformation of the ADTree to a DAG. The architecture
of ADT2AMAS is described in more detail in [89].

5.5.1 Benchmarks

The algorithm was evaluated on a number of benchmarks, detailed below.

Literature case studies

The first set of benchmarks includes the three case studies already discussed in Section 4.7.1: forestall,

iot-dev, gain-admin, whose ADTrees are presented in Figure 4.5, Figure 4.6, and Figure 4.7, respectively.

81

For forestall, there are 4 possible cases depending on which defence nodes are active, however the DAG
corresponding to no defences is actually the same as the one where only id is active, leaving 3 unique
variants. Of these, all have an optimal schedule using only 1 agent, with different attack time depending
on the variants induced by active defences: 43 days for the no defence (or id only) case, 54 days if only
scr is active, and 55 days if both defences occur. Note that while a single agent is sufficient to achieve
minimal attack time in this benchmark, the synthesised schedules are still useful as they point out specific

attacks that must be performed in order to achieve optimality. The results are reported in Table 5.2.

(a) DAG (a) (b) DAG (b) (¢) DAG (c)
agent 1 agent 1 agent 1
slot slot slot
1 hr’ hry 1 hh' hh, 1 bp’, bp;
hr, 2 hh, 2 bps
9 hrg 19 hhllg , , 14 bP14
10 PR/, hryo 2 NA3, NA, o, sb 15 BRB,, bpys
11 reb/, reb; 3; E:‘; +heby 16 psc’,pscy
12 reb, 23 heb2 17 pscay
’ / ’ ’ / ’ 3 L. .
13 FS}, PR;, PR}, PRS', SC', rebs, rfc o NN
14 icp’,icpy N 22 pscy
L 25 icp’,icp; z
15 icps 2% icps 23 BRBY,, BRB;
24 BRB,
27 iCp14 38 iCp14 25 BRBg, FS’l, sc’
28 FS,,icpis 39 FS), icpss 26 ;:ch'y icpy
29 dtm’, dtmg 40 dtm’, dtm; 27 1cp2
30 dtmy 41 dtm, o B
33 dtmg 44 dtmg 40 FS,,icpis
34 FS;, FSy 45 FS ps, 41 dtm’, dtmy
35 FS, 46 FS, 42 dtm,
43 FSio 54 FS1o 45 dtmg
46 FSI&FS1
47 FS,
55 FS1o

Table 5.2: Assignment for forestall.

For iot-dev, note that only 1 of 4 possible cases (no active defences) leads to a DAG, since we have that
tla causes the failure of GVC, which in turn makes APN and then APNS fail, independent of inc. Thus,
the attack necessarily fails. This is also the case if defence inc is active. The only way for the attack to
succeed is that all defences fail, in which case the optimal schedule uses 2 agents and the attack takes
694 minutes. On the other hand, the algorithm’s output provides crucial information to the defending
party, namely that activating any one of the two defences is sufficient to prevent any attack. The results
are reported in Table 5.3.

For gain-admin, the largest ADTree of the three case studies, there are as many as 16 possible combi-
nations of active defences. However, it turns out they are all covered by just 3 cases: scr not active, scr
active but not DTH, and both of them active. The fastest attack for those cases can be scheduled in in
2942, 4320 and 5762 minutes, respectively. As in the case of forestall, each requires only a single agent,
with the algorithm still useful for determining particular attacks to be performed by that agent. The

results are reported in Table 5.4.

Additional benchmarks

Additionally, the algorithm was tested on several smaller examples, not corresponding to or based on
specific real-world security scenarios, but designed specifically to exhibit particular features and charac-

teristics of the schedules.

82

agent
slot 1 2
1 gc’ gcy
2 gCo

510 gCs10

511 gCs11 flp/,flpl

512 gCs12 f1p2

569 gCs69 f1p59

570 gCs70 AL’l, flpeo

571 gCs71 sma’, smay

572 gCs72 smasy

599 gCs99 Smagg

600 GVC/, gC600 AL/Q, CPNI, Smaszgp

601 APN', APN,

602 APN,

603 APN3

604 APNS’, APNS,, CIoTD),

605 esv’, esvy

606 esvy

663 €SVsg

664 CIoTD,, esveo

665 rms’, rms;

666 rms,

693 rmsqg

694 CIoTDj, rmsso

Table 5.3: Assignment for iot-dev.
(a) DAG (a) (b) DAG (b) (c) DAG (c)
agent 1 agent 1 agent 1
slot slot i slot
1 bec!, beey ; th', thy 1 co’, coy
2 bcey - th2 2 cos

4319 ™
2879 bccogrg 4320 GSAP', OAP', TSA', thasso 5760 COs760
2880 ECC/, bCC2880 5761 ACLI/, ACLI1
2881 ECCS’, ECCS; 5762 ACLI; gppr
2882 ECCS,
2940 ECCSeo
2941 ACLI’, ACLI,
2942 ACLI; gppr

Table 5.4: Assignment for gain-admin.

The first one, denoted by interrupted, demonstrates that the algorithm can produce an interleaved
execution of two attacks b and e, assigned to the same agent. The ADTree, node attributes, and obtained
assignment are reported in Figure 5.6.

The second example, last, provides a succession of nodes with zero duration (a’, ¢’, £/, b’ and i’),
showing that they are handled as expected. The ADTree, node attributes, and obtained assignment are

reported in Figure 5.7.

83

agent
1 2
Name Time slot
a g m 1 dl7 d, e', €1
b m
S o AR
d 4 m 3 ds €2
OO T ; e
5 Clv C1 alv b2

Figure 5.6: Interrupted schedule example (interrupted) and the obtained assignment.

Name Time
0m
Im

a
b
c 1m
@ ﬂ : . agent 1 9
slot
. e 0m
. £ 0m 1 d’,dy
f H g 0m 2 dy i’ 11,
ltl 0Om 3 dg C/,Cl
: 0m) Joel vl sl
! i 3 1m 4 a’,b’,by | €, h' §' i1
k 0m
O mO o o
m 0 m

Figure 5.7: Last example (last) and the obtained assignment.

5.6 Summary

In this chapter, we have looked at model reductions from a different point of view, i.e. firstly, aiming to
minimise the number of agents in the system and secondly, to optimally assign them to specific tasks.
Thus far, these aspects were not considered in this thesis: both the classical partial order reduction
(Chapter 3) as well as the specialised pattern- and layer-based techniques for tree topologies (Chapter 4)
were always applied within the context of a given model (and a particular sSATL* formula). Note that,
crucially, the asynchronous interleaving of agents’ private events in AMAS means that their models, or
Interleaved Interpreted Systems (cf. Definition 2.1.3), increase exponentially in size with the number of
agents in the AMAS. Hence, even though experimental results demonstrate the efficiency of the afore-
mentioned reduction techniques on a number of benchmarks, the practical verification of strategic ability
in asynchronous systems may still prove unfeasible unless the number of components (and corresponding
agents) that generate the model can be reduced first.

Clearly, any such approach needs to take into account the specifics of a particular model or class of
models, at least to a certain extent. Here, we continued to focus on systems with a tree synchronisation
topology, previously investigated in Chapter 4). In this setting, the non-trivial optimisation problem
of synthesising the minimal schedule using the minimal number of agents for a given ADTree can be
considered. Tackling it, building upon the notion of Guarded Update Systems (cf. Section 4.3), we have
first generalised the latter to Extended AMAS (EAMAS), since agents are now considered. Then, we
have demonstrated an algorithm that takes an ADTree and, after several preprocessing steps, produces

an optimal action assignment using the minimal number of agents.

5.6.1 Related work

As in the previous chapter, attack-defence trees were extensively referred to throughout this one; thus,
for general literature on this formalism, we refer the reader to Section 4.9.1. The problem of minimal
scheduling for minimal number of agents in ADTrees was discussed in [6], using the translation to EAMAS

automata patterns, corresponding to individual agents, proposed in [4].

84

While considering agents in this context is a new aspect, from the perspective of optimisation problems
there is clear relevance to earlier work, in particular on parallel program scheduling with task precedence
[90, 91]. Since the algorithm’s input are preprocessed DAGs with normalised time, the problem falls into
the Unit Computational Cost (UCC) category, whereas it can also be classified as No Communication
(NC) graph scheduling, due to the fact the exchange of information between agents or nodes in all
considered graphs is assumed to be instantaneous and does not incur any additional cost.

UCC problems can be effectively solved for tree-like structures [92], but cannot be directly applied
to a set of DAGs. Although a polynomial solution for interval-ordered DAGs was proposed [93], that
algorithm does not guarantee the minimal number of agents.

For NC problems, a number of heuristic algorithms using list scheduling were proposed [90], including
Highest Levels First with No Estimated Times (HLFNET), Smallest Co-levels First with no Estimated
Times (SCFNET), and Random, where nodes in the DAG are assigned priorities randomly. Variants
assuming non-uniform node computation times are also considered, but are not applicable to the problem
solved in this chapter. Furthermore, this class of algorithms does not aim at finding a schedule with the
minimal number of processors or agents. On the other hand, known algorithms that include such a limit,
i.e. for the Bounded Number of Processors (BNP) class of problems, assume non-zero communication
cost and rely on the clustering technique, reducing communication, and thus schedule length, by mapping
nodes to processing units. Hence, these techniques are not directly applicable.

The algorithm described in this chapter can be classified as list scheduling with a fusion of HLENET
and SCFNET heuristics, but with additional restriction on the number of agents used. The length of
a schedule is determined as the length of the critical path of a graph. The number of minimal agents
needed for the schedule is found with bisection.

Branching schedules analogous to the variants discussed in Section 5.3.1 have been previously explored,
albeit using different models that either include probability [94] or require an additional DAG to store
possible executions [95]. Zero duration nodes are also unique to the ADTree setting.

To the best of our knowledge, this is the first work dealing with agents in this context. Rather,
scheduling in multi-agent systems typically focuses on agents’ choices in cooperative or competitive
scenarios, e.g. in models such as BDI [96, 97].

Finally, we note that the problem considered in this chapter can also be tackled within the framework
of a general theory, as opposed to using a specialised algorithm. An approach using rewriting logic and
the Maude verifier [98] has been proposed in [99], with a declarative, easily extensible model based on
a set of rules, the detailed discussion of which falls outside the scope of this thesis. However, we note
that although the specialised algorithm presented here typically outperforms Maude, the latter remains
performant enough to be of practical use, and, more importantly, brings other unique advantages. In
particular, the declarative approach allows for easily extending the concept with additional constraints,
and other ADTree performance metrics than time and cost, including the possibility of a multi-objective

optimisation goals.

85

Chapter 6

Conclusions

6.1 Summary

In this thesis, we have tackled the problem of model reduction in systems involving agents that asyn-
chronously interleave their actions. The problem of state explosion is inherent to such asynchronous
systems, making their formal verification a major challenge, and thus rendering efficient methods of
reducing the state and transition spaces all but essential.

At the same time, the need for formal verification is clear, as increasingly complex systems have
become prevalent in nearly all aspects of our daily lives, including applications that can be considered
mission critical, where erroneous design may directly impact human welfare or even life. The aspect of
strategic ability of agents, considered in this thesis, adds yet another layer of complexity compared to
purely temporal, linear or branching-time logics. The question is no longer just what the evolution of a
system in time can or will look like, but who can make it evolve in a particular way, and how can they
achieve that goal.

In practical applications, electronic voting serves as an excellent setting to demonstrate the usefulness
of model checking alternating-time temporal logic ATL* in asynchronous systems. From the point of
view of formal verification, e-voting protocols and procedures are at the intersection of very relevant
aspects, both technical (e.g. cryptography) and, even more so, social (e.g. trustworthiness, verifiability,
resistance to various forms of coercion).

Verifying such properties is a hard computational problem, not just because of the state explosion,
but first and foremost, due to the addition of strategic reasoning on top of the formalism of temporal
logic. This makes our main technical result notable for a number of reasons: it demonstrates that the
existing reduction technique for LTL, a purely temporal logic which cannot express properties involving

the strategic abilities of agents, remains applicable to ATL* as well.

6.2 Directions for Future Research

While we have obtained notable theoretical results, in particular regarding partial order reduction, which
can be adapted from LTL to a subset of ATL* at no extra cost in computational complexity, this by no
means exhausts potential avenues for further research.

Firstly, symbolic model checking of ATL* could be considered, particularly in the context of poten-
tial adaptation of existing partial order reductions schemes, analogously to the approach discussed in
Chapter 3. Secondly, other logical formalisms that allow for reasoning about strategic ability could be

considered, with Strategy Logic (SL) being a prime example. Furthermore, the applicability of partial

87

order reductions could be investigated for timed logics, either with discrete or continuous time, in par-
ticular those combining the notions of time and strategic ability. Here, the recently proposed STCTL
and its subset SCTL [100] are excellent candidates, as under certain assumptions (memoryless strategies
with imperfect information) they offer higher expressivity than comparable logics without increasing the
complexity of model checking.

As for the investigation of specialised reduction techniques for ADTrees, and the minimisation of
the number of required agents, it remains a possibility to consider leveraging SAT- or SMT-solvers
to produce the set of variants induced by different configurations of OR and defence nodes, leaving the
algorithm to perform only the scheduling itself (which is already proven to be done optimally). Of
course, the downside is that the algorithm remains a highly specialised solution applicable exclusively to
ADTrees, and currently only to the attack time metric. Thus, extensions to other metric such as cost
could be proposed, as well as formulating this optimisation problem within the framework of a general
theory, such as the approach utilising rewriting logic and the Maude verifier [99], trading off the higher

efficiency of the specialised algorithm for applicability to a much more general class of problems.

88

Bibliography

[1]

[13]

W. Jamroga, W. Penczek, T. Sidoruk, P. Dembinski, and A. Mazurkiewicz, “Towards Partial Order
Reductions for Strategic Ability,” Journal of Artificial Intelligence Research, vol. 68, pp. 817-850,
2020.

W. Jamroga, W. Penczek, and T. Sidoruk, “Strategic Abilities of Asynchronous Agents: Semantic
Side Effects and how to tame them,” in Proceedings of KR 2021, 2021, pp. 368-378.

D. Kurpiewski, W. Jamroga, ¥.. Masko, ¥.,, Mikulski, W. Pazderski, W. Penczek, and T. Sidoruk,
“Verification of Multi-Agent Properties in Electronic Voting: A Case Study,” in Proceedings of
AiML 2022. College Publications, 2022, pp. 531-556.

J. Arias, C. Budde, W. Penczek, L. Petrucci, T. Sidoruk, and M. Stoelinga, “Hackers vs. Secu-
rity: Attack-Defence Trees as Asynchronous Multi-agent Systems,” in Proceedings of ICFEM 2020.
Springer, 2020, pp. 3-19.

L. Petrucci, M. Knapik, W. Penczek, and T. Sidoruk, “Squeezing State Spaces of (Attack-Defence)
Trees,” in Proceedings of ICECCS 2019. IEEE, 2019, pp. 71-80.

J. Arias, L. Petrucci, .. Masko, W. Penczek, and T. Sidoruk, “Minimal Schedule with Minimal
Number of Agents in Attack-Defence Trees,” in Proceedings of ICECCS 2022. 1EEE, 2022, pp.
1-10.

E. M. Clarke and E. A. Emerson, “Design and Synthesis of Synchronization Skeletons Using Branch-

i

ing Time Temporal Logic,” in Logics of Programs. Berlin: Springer, 1982, pp. 52-71.

J. P. Queille and J. Sifakis, “Specification and Verification of Concurrent Systems in CESAR,” in
International Symposium on Programming. Berlin: Springer, 1982, pp. 337-351.

A. Pnueli, “The Temporal Semantics of Concurrent Programs,” in Semantics of Concurrent Com-
putation, G. Kahn, Ed. Berlin: Springer, 1979, pp. 1-20.

A. N. Prior, Time and Modality. Greenwood Press, 1955.

H. Kamp, “Tense Logic and the Theory of Linear Order,” Ph.D. dissertation, University of Cali-
fornia, 1968.

J. R. Burch, E. M. Clarke, K. L. McMillan, and D. L. Dill, “Sequential Circuit Verification Using
Symbolic Model Checking,” in Proceedings of the 27th ACM/IEEE Design Automation Conference.
IEEE Computer Society Press, 1990, pp. 46-51.

K. Havelund and N. Shankar, “Experiments in Theorem Proving and Model Checking for Protocol
Verification,” in Proceedings of FMFE “96. Berlin: Springer, 1996, pp. 662—681.

89

[14]

[15]

[17]

[18]

[19]

[20]

28]

[29]

[30]

[31]

E. M. Clarke, S. Jha, and W. R. Marrero, “Verifying Security Protocols with Brutus,” ACM
Transactions on Software Engineering and Methodology, vol. 9, no. 4, pp. 443-487, 2000.

T. Witkowski, N. Blanc, D. Kroening, and G. Weissenbacher, “Model Checking Concurrent Linux
Device Drivers,” in Proceedings of ASE °07. ACM, 2007, p. 501-504.

F. Schneider, S. M. Easterbrook, J. R. Callahan, and G. J. Holzmann, “Validating Requirements
for Fault Tolerant Systems using Model Checking,” in Proceedings of ICRE ’98. TEEE Computer
Society, 1998, pp. 4-13.

K. Havelund, M. Lowry, and J. Penix, “Formal Analysis of a Space Craft Controller Using SPIN,”
IEEE Transactions on Software Engineering, vol. 27, no. 8, pp. 749-765, 2001.

G. J. Holzmann and R. Joshi, “Model-Driven Software Verification,” in Proceedings of the 11th
International SPIN Workshop, ser. Lecture Notes in Computer Science, vol. 2989. Springer, 2004,
pp. 76-91.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang, “Symbolic Model Checking:
10720 States and Beyond,” in Proceedings of LICS ’90. TEEE Computer Society, 1990, pp. 428-439.

A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu, “Symbolic Model Checking Without BDDs,” in
Proceedings of TACAS 1999. Springer, 1999, pp. 193—-207.

R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time Temporal Logic,” J. ACM, vol. 49,
no. 5, pp. 672-713, 2002.

K. Chatterjee, T. A. Henzinger, and N. Piterman, “Strategy Logic,” in Proceedings of CONCUR
’07. Springer, 2007, p. 59-73.

)

R. Alur, T. A. Henzinger, and O. Kupferman, “Alternating-time Temporal Logic,” in Proceedings

of COMPOS ’97, ser. Lecture Notes in Computer Science, vol. 1536. Springer, 1997, pp. 23-60.

M. J. Osborne and A. Rubinstein, A Course in Game Theory. Cambridge, Massachusetts: MIT
Press, 1994.

W. Jamroga, W. Penczek, P. Dembinski, and A. Mazurkiewicz, “Towards Partial Order Reductions
for Strategic Ability,” in Proceedings of AAMAS ’18. ACM, 2018, pp. 156-165.

P. Schobbens, “Alternating-time Logic with Imperfect Recall,” Electronic Notes in Theoretical
Computer Science, vol. 85, no. 2, pp. 82-93, 2004.

N. Bulling and W. Jamroga, “Comparing Variants of Strategic Ability: How Uncertainty and
Memory Influence General Properties of Games,” Journal of Autonomous Agents and Multi-Agent
Systems, vol. 28, no. 3, pp. 474-518, 2014.

L. Priese, “Automata and Concurrency,” Theoretical Computer Science, vol. 25, no. 3, pp. 221 —
265, 1983.

C. A. R. Hoare, “Communicating Sequential Processes,” Communications of the ACM, vol. 21,
no. 8, pp. 666-677, 1978.

R. Milner, A Calculus of Communicating Systems, ser. Lecture Notes in Computer Science.
Springer, 1980, vol. 92.

J. A. Bergstra and J. W. Klop, “Algebra of Communicating Processes with Abstraction,” Theoretical
Computer Science, vol. 37, pp. 77-121, 1985.

90

[32]

[33]

R. Milner, J. Parrow, and D. Walker, “A Calculus of Mobile Processes, 1,” Information and Com-
putation, vol. 100, no. 1, pp. 1-40, 1992.

W. Jamroga, B. Konikowska, D. Kurpiewski, and W. Penczek, “Multi-valued Verification of Strate-
gic Ability,” Fundam. Informaticae, vol. 175, no. 1-4, pp. 207-251, 2020.

M. Knapik, E. André, L. Petrucci, W. Jamroga, and W. Penczek, “Timed ATL: Forget Memory,
Just Count,” Journal of Artificial Intelligence Research, vol. 66, pp. 197-223, 2019.

A. Lomuscio, W. Penczek, and H. Qu, “Partial Order Reductions for Model Checking Temporal-
epistemic Logics over Interleaved Multi-agent Systems,” Fundamenta Informaticae, vol. 101, no.
1-2, pp. 71-90, 2010.

R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi, Reasoning about Knowledge. ~MIT Press,
1995.

W. van der Hoek and M. J. Wooldridge, “Tractable Multiagent Planning for Epistemic Goals,” in
Proceedings of AAMAS °02. ACM, 2002, pp. 1167-1174.

W. Jamroga and M. Tabatabaei, “Preventing Coercion in E-Voting: Be Open and Commit,” in
Proceedings of E-Vote-ID 2016, ser. Lecture Notes in Computer Science, vol. 10141. Springer,
2016, pp. 1-17.

M. Tabatabaei, W. Jamroga, and P. Y. A. Ryan, “Expressing Receipt-Freeness and Coercion-
Resistance in Logics of Strategic Ability: Preliminary Attempt,” in Proceedings of PrAISeECAI
2016. ACM, 2016, pp. 1:1-1:8.

R. Gerth, R. Kuiper, D. Peled, and W. Penczek, “A Partial Order Approach to Branching Time
Logic Model Checking,” Information and Computation, vol. 150, pp. 132-152, 1999.

E. Clarke, O. Grumberg, and D. Peled, Model Checking. MIT Press, 1999.

A. Mazurkiewicz, “Basic Notions of Trace Theory,” in Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, ser. Lecture Notes in Computer Science, vol. 354.
Springer, 1988, pp. 285-363.

D. A. Peled, “Partial Order Reduction: Model-Checking Using Representatives,” in Proceedings of
MFCS’96. Springer, 1996, pp. 93-112.

D. F. P. Cartier, Problemes combinatoires de commutation et rearrangements. Springer, 1969.

A. Mazurkiewicz, “Concurrent Program Schemes and Their Interpretations,” DAIMI Report Series,
vol. 6, no. 78, 1977.

b2

——, “Trace Theory,” in Petri Nets: Applications and Relationships to Other Models of Concur-

rency, ser. Lecture Notes in Computer Science, vol. 255. Springer, 1987, pp. 278-324.

D. Peled, “Combining Partial Order Reductions with On-the-fly Model-Checking,” in Proceedings
of CAV 94, ser. Lecture Notes in Computer Science, vol. 818. Springer, 1994, pp. 377-390.

G. Holzmann, “On-the-fly Model Checking,” ACM Computing Surveys, vol. 28, no. 4es, p. 120-es,
1996.

P. A. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Source Sets: A Foundation for Optimal
Dynamic Partial Order Reduction,” Journal of the ACM, vol. 64, no. 4, 2017.

91

[50]

[54]

[55]

[61]

[62]

[64]

R. Alur, T. A. Henzinger, and M. Y. Vardi, “Parametric Real-time Reasoning,” in ACM Symposium
on Theory of Computing, 1993. ACM, 1993, pp. 592-601.

R. Alur, T. Henzinger, F. Mang, S. Qadeer, S. Rajamani, and S. Tasiran, “MOCHA User Manual,”
in Proceedings of CAV 98, ser. Lecture Notes in Computer Science, vol. 1427, 1998, pp. 521-525.

M. Knapik, A. Meski, and W. Penczek, “Action Synthesis for Branching Time Logic,” ACM Trans-
actions on Embedded Computing Systems, vol. 14, pp. 1-23, 2015.

F. Belardinelli, A. V. Jones, and A. Lomuscio, “Model Checking Temporal-Epistemic Logic Using
Alternating Tree Automata,” Fundamenta Informaticae, vol. 112, no. 1, pp. 19-37, 2011.

D. Peled, “All from One, One for All: on Model Checking Using Representatives,” in Proceedings
of CAV ’93. Berlin: Springer, 1993, pp. 409-423.

W. Jamroga, M. Knapik, and D. Kurpiewski, “Fixpoint Approximation of Strategic Abilities under
Imperfect Information,” in Proceedings of AAMAS °17. ACM, 2017, pp. 1241-1249.

A. Valmari, “Stubborn Sets for Reduced State Space Generation,” in Advances in Petri Nets 1990.
Berlin: Springer, 1991, pp. 491-515.

P. Godefroid, Partial-Order Methods for the Verification of Concurrent Systems: An Approach to
the State-Explosion Problem. Berlin: Springer, 1996.

F. M. Bgnneland, P. G. Jensen, K. G. Larsen, M. Muniz, and J. Srba, “Partial Order Reduction
for Reachability Games,” in Proceedings of CONCUR 2019. Schloss Dagstuhl - Leibniz-Zentrum
fiir Informatik, 2019, pp. 23:1-23:15.

——, “Stubborn Set Reduction for Two-Player Reachability Games,” Logical Methods in Computer
Science, vol. 17, no. 1, 2021.

T. Neele, T. A. C. Willemse, W. Wesselink, and A. Valmari, “Partial-Order Reduction for Parity
Games and Parameterised Boolean Equation Systems,” International Journal on Software Tools
for Technology Transfer, vol. 24, no. 5, pp. 735-756, 2022.

C. Flanagan and P. Godefroid, “Dynamic Partial-Order Reduction for Model Checking Software,”
in Proceedings of POPL "05. ACM, 2005, pp. 110-121.

P. Godefroid, “Model Checking for Programming Languages Using VeriSoft,” in Proceedings of
POPL ’97. ACM, 1997, p. 174-186.

S. Aronis, B. Jonsson, M. Lang, and K. Sagonas, “Optimal Dynamic Partial Order Reduction with
Observers,” in Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2018,
pp- 229-248.

S. Kan, Z. Huang, Z. Chen, W. Li, and Y. Huang, “Partial Order Reduction for Checking LTL
Formulae with the Next-time Operator,” Journal of Logic and Computation, vol. 27, no. 4, pp.
1095-1131, 2016.

A. Buldas, P. Laud, J. Priisalu, M. Saarepera, and J. Willemson, “Rational Choice of Security Mea-
sures via Multi-parameter Attack Trees,” in Critical Information Infrastructures Security. Springer,
2006, pp. 235—248.

92

[66]

[69]

[70]

73]

[74]

[79]

[80]

[81]

[82]

R. Kumar, E. Ruijters, and M. Stoelinga, “Quantitative Attack Tree Analysis via Priced Timed
Automata,” in Proceedings of FORMATS 2015, ser. Lecture Notes in Computer Science, vol. 9268.
Springer, 2015, pp. 156-171.

M. Steiner and P. Liggesmeyer, “Qualitative and Quantitative Analysis of CFTs Taking Security
Causes into Account,” in Computer Safety, Reliability, and Security. Springer, 2015, pp. 109-120.

R. Kumar, S. Schivo, E. Ruijters, B. M. Yildiz, D. Huistra, J. Brandt, A. Rensink, and M. Stoelinga,
“Effective Analysis of Attack Trees: A Model-Driven Approach,” in Fundamental Approaches to
Software Engineering. Springer, 2018, pp. 56-73.

J. D. Weiss, “A System Security Engineering Process,” in Proceedings of the 14th National Computer
Security Conference, 1991, pp. 572-581.

A. Jirgenson and J. Willemson, “Computing Exact Outcomes of Multi-parameter Attack Trees,”
in Proceedings of OTM 2008. Springer, 2008, pp. 1036-1051.

B. Kordy, L. Pietre-Cambacédes, and P. Schweitzer, “DAG-based Attack and Defense Modeling:
Don’t Miss the Forest for the Attack Trees,” Computer Science Review, vol. 13-14, pp. 1-38, 2014.

S. Mauw and M. Oostdijk, “Foundations of Attack Trees,” in Proceedings of ICISC 2005. Springer,
2006, pp. 186-198.

R. Jhawar, B. Kordy, S. Mauw, S. Radomirovi¢, and R. Trujillo-Rasua, “Attack Trees with Sequen-
tial Conjunction,” in ICT Systems Security and Privacy Protection. Springer, 2015, pp. 339-353.

C. Salter, O. Saydjari, B. Schneier, and J. Wallner, “Toward a Secure System Engineering Method-
ology,” in Proceedings of NSPW ’98. ACM, 1998, pp. 2-10.

B. Kordy, S. Mauw, S. Radomirovi¢, and P. Schweitzer, “Foundations of Attack-Defense Trees,” in
Proceedings of FAST 2010, ser. Lecture Notes in Computer Science, vol. 6561. Springer, 2011, pp.
80-95.

——, “Attack—Defense Trees,” Journal of Logic and Computation, vol. 24, no. 1, pp. 55-87, 2014.

Z. Aslanyan and F. Nielson, “Pareto Efficient Solutions of Attack-Defence Trees,” in Principles of
Security and Trust, ser. Lecture Notes in Computer Science. Springer, 2015, vol. 9036, pp. 95-114.

A. Bossuat and B. Kordy, “Evil Twins: Handling Repetitions in Attack-Defense Trees - A Survival
Guide,” in Proceedings of GraMSec 2017, ser. Lecture Notes in Computer Science, vol. 10744.
Springer, 2017, pp. 17-37.

B. Kordy and W. Widel, “On Quantitative Analysis of Attack-Defense Trees with Repeated Labels,”
in Proceedings of POST 2018, ser. Lecture Notes in Computer Science, vol. 10804. Springer, 2018,
pp- 325-346.

B. Fila and W. Widel, “Efficient Attack-Defense Tree Analysis Using Pareto Attribute Domains,”
in Proceedings of CSF 2019. 1EEE, 2019, pp. 200-215.

O. Gadyatskaya, R. R. Hansen, K. G. Larsen, A. Legay, M. C. Olesen, and D. B. Poulsen, “Modelling
Attack-Defense Trees Using Timed Automata,” in Formal Modeling and Analysis of Timed Systems.
Springer, 2016, vol. 9884, pp. 35-50.

R. Kumar and M. Stoelinga, “Quantitative Security and Safety Analysis with Attack-Fault Trees,”
in Proceedings of HASE 2017. 1EEE, 2017, pp. 25-32.

93

[83]

[84]

[100]

Dalton, Mills, Colombi, and Raines, “Analyzing Attack Trees Using Generalized Stochastic Petri
Nets,” in Proceedings of the 2006 IEEE Information Assurance Workshop, 2006, pp. 116-123.

F. Arnold, D. Guck, R. Kumar, and M. Stoelinga, “Sequential and Parallel Attack Tree Modelling,”
in Computer Safety, Reliability, and Security. Springer, 2015, pp. 291-299.

R. Kumar, D. Guck, and M. Stoelinga, “Time Dependent Analysis with Dynamic Counter Measure
Trees,” CoRR, vol. abs/1510.00050, 2015.

M. Gribaudo, M. Tacono, and S. Marrone, “Exploiting Bayesian Networks for the Analysis of
Combined Attack Trees,” Electronic Notes in Theoretical Computer Science, vol. 310, pp. 91-111,
2015.

Z. Aslanyan, F. Nielson, and D. Parker, “Quantitative Verification and Synthesis of Attack-Defence
Scenarios,” in Proceedings of CSF 2016. TEEE, 2016, pp. 105-119.

H. Hermanns, J. Kramer, J. Krcal, and M. Stoelinga, “The Value of Attack-Defence Diagrams,”
in Proceedings of POST 2016, ser. Lecture Notes in Computer Science, vol. 9635. Springer, 2016,
pp. 163-185.

J. Arias, W. Penczek, L. Petrucci, and T. Sidoruk, “ADT2AMAS: Managing Agents in Attack-
Defence Scenarios,” in Proceedings of AAMAS "21. ACM, 2021, pp. 1749-1751.

T. L. Adam, K. M. Chandy, and J. R. Dickson, “A Comparison of List Schedules for Parallel
Processing Systems,” Communications of the ACM, vol. 17, no. 12, p. 685-690, 1974.

Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating Directed Task Graphs to
Multiprocessors,” ACM Computing Surveys, vol. 31, no. 4, pp. 406-471, 1999.

T. C. Hu, “Parallel Sequencing and Assembly Line Problems,” Operations Research, vol. 9, no. 6,
pp- 841-848, 1961.

C. H. Papadimitriou and M. Yannakakis, “Scheduling Interval-Ordered Tasks,” SIAM Journal on
Computing, vol. 8, no. 3, pp. 405-409, 1979.

D. F. Towsley, “Allocating Programs Containing Branches and Loops Within a Multiple Processor
System,” IEEE Transactions on Software Engineering, vol. 12, no. 10, pp. 1018-1024, 1986.

H. El-Rewini and H. H. Ali, “Static Scheduling of Conditional Branches in Parallel Programs,”
Journal of Parallel and Distributed Computing, vol. 24, no. 1, pp. 41-54, 1995.

I. Nunes and M. Luck, “Softgoal-based Plan Selection in Model-driven BDI Agents,” in Proceedings
of AAMAS ’14. TFAAMAS, 2014, pp. 749-756.

M. Dann, J. Thangarajah, Y. Yao, and B. Logan, “Intention-Aware Multiagent Scheduling,” in
Proceedings of AAMAS ’20. IFAAMAS, 2020, pp. 285-293.

S. Eker, J. Meseguer, and A. Sridharanarayanan, “The Maude LTL Model Checker and Its Imple-
mentation,” in Proceedings of SPIN ’03. Springer, 2003, p. 230-234.

J. Arias, C. Olarte, L. Petrucci, .. Masko, W. Penczek, and T. Sidoruk, “Optimal Scheduling of
Agents in ADTrees: Specialised Algorithm and Declarative Models,” CoRR, vol. abs/2305.04616,
2023.

J. Arias, W. Jamroga, W. Penczek, L. Petrucci, and T. Sidoruk, “Strategic (Timed) Computation
Tree Logic,” in Proceedings of AAMAS '23. ACM, 2023, pp. 382-390.

94

Index

ADTree, 16, 49, 51, 53, 55, 57-64, 69, 70, 74, 77,
78, 80-82, 84, 85, 88
agent, 15, 16, 19, 20, 22, 31, 47, 67, 69, 71, 74,
76-78, 80-85, 87
coalition, 22, 23, 26, 37, 49, 70
proactive, 26, 27, 46
reactive, 26, 27, 46
AMAS, 16, 19, 20, 23, 25, 26, 31, 34, 41, 46, 47, 49,
67, 69, 84
extended, 51, 64, 68-70, 81, 84
with explicit control, 27
attribute, 51, 53, 68, 70, 74, 80
automata, 16, 53, 55, 57, 62, 64, 69, 70
Biichi, 48
network, 19, 34, 63, 64, 68
timed, 65

backtracking, 48, 75

coercion resistance, 15, 47, 87
communication, 85

asynchronous, 42

synchronous, 42
computational complexity, 16, 46, 80, 88
concurrency fairness, 23, 26, 38
condition, 51, 53, 68
cycle, 35

DAG, 70, 72-74, 76, 80-82, 85
deadlock, 25, 26
distributed systems, 25

e-voting, 25, 31

equivalence
stuttering, 33, 36, 37
trace, 34

event, 20, 31, 49, 84
enabled, 23, 27, 34
independence, 23, 35, 37, 48
invisibility, 23, 35, 37
shared, 20, 69

95

expressivity, 32, 46, 88

game
parity, 48
reachability, 48
stochastic, 65
graph, 53
directed acyclic, see DAG
scheduling, 85
guard, 52, 53, 56, 68
Guarded Update System, see GUS
GUS, 51, 53, 55, 57, 64, 68, 84

heuristic, 34, 85

IIS, see model

extended, 68, 69
IMITATOR, 61, 64, 65
indistinguishability, 28, 39

later-based reduction, 84
LaTeX, 65, 81
layer-based reduction, 55, 57, 58, 60-62, 64

local component, 21

Mazurkiewicz trace, 33, 38
finite, 33
infinite, 33
message, 53, 60, 64, 68
message channel, 42
modality
epistemic, 15, 28, 39, 47
strategic, 15, 16, 21, 22, 28, 40, 47
model, 14, 16, 20, 25, 28, 31, 33, 34, 36, 41, 44, 49,
64, 67, 70, 84
undeadlocked, 25, 26
model checker, 42
model checking, 14, 31, 34, 45, 49, 88
bounded, 15
on-the-fly, 16, 34
stateless, 48
symbolic, 14, 87

multi-agent system reachability, 26, 28, 55, 58

asynchronous, see AMAS rewriting logic, 85, 88
synchronous, 36 rules, 85
run, 52, 53, 74
nesting

runtime, 48
of strategic modalities, 28

node, 53, 57, 60, 69, 70, 74, 77, 80 safety, 26
attack, 53 SAT-solver, 15, 88
child, 51, 53, 55, 57, 60, 62, 69, 71, 75, 77-79 schedule, 16, 67, 70-72, 74, 76-82, 84, 85, 88
counter-defence, 51 interrupted, 77, 83
defence, 53, 82 invalid, 80, 81
gate, 69, 78 search
leaf, 51, 56, 75, 76 depth-first, 34, 40, 75
parent, 53, 55, 69, 71, 75, 77-79 semantics
root, 51, 53, 56, 74-76, 80 AMAS execution, 25, 27, 47
of ATL*, 24
observability, 48 of ATLK*, 28
operator sequence
epistemic, 28 of events, 21, 36, 37
next step, 28, 33, 48 set
strategic, 22, 28 ample, 34

temporal, 22, 28
opponent reactivity, 23, 26, 27, 35, 41

of all events, 25
of all paths, 21

optimisation of enabled events, 23, 35
multi-objective, 85 source. 48
outcome, 23, 27, 35 SMT-solver, 15, 88
concurrency-fair, 24 SPIN. 16. 42. 47. 64
reactive, 26 o
state

standard, 23 global, 20, 33, 34, 68

partial order reduction, 16, 22, 28, 32, 34-36, 44, initial global, 20, 24, 28, 68

46. 49. 63. 64. 67. 84. 87 initial local, 20
local, 20, 27

state space, 16, 22, 45, 64, 87
strategic ability, 15, 16, 22, 35, 46, 87
objective, 24, 46
subjective, 25, 40, 46
strategy, 15, 22, 23, 27, 36, 47

dynamic, 48

path, 23, 25, 32-34, 36, 64
concurrency-fair, 24
finite, 25
infinite, 21

opponent-reactive, 26

path quantifier 1R, 22
existential, 21, 22 Ir, 22
universal, 21, 22 iR, 22, 35

ir, 22, 35

pattern-based reduction, 55, 58, 60-62, 64, 84
Petri net, 65
precedence, 55, 85

joint, 22, 26, 37
miscoordinated, 26, 36
stuttering equivalence, 33, 37
submodel, 32, 34, 39, 44
subtree, 55, 56, 72, 74, 77, 79
synchronisation, 20, 49, 53, 57, 64, 69, 71

process, 42, 48
PROMELA, 42
protocol, 20, 23, 26
with explicit control, 27

96

topology, 16, 53, 55-57, 60, 64, 67, 84
syntax

of ATLK*, 28

of ATL*, 21

temporal logic, 14
alternating-time, 15, 16, 21, 35, 37, 47, 84, 87
branching, 14-16, 21, 22, 47, 87
epistemic, 28, 47
linear, 14-16, 33, 35, 42, 4648, 87
multi-valued, 28
timed, 15, 28, 88
trace-completeness, 38
transition
€, 25, 36
transition function
global, 20, 34, 68
local, 20
transition space, 16, 45, 64, 87
tree
attack, 49
attack-defence, see ADTree
root-directed, 56
update-separable, 55, 56
wakeup, 48

update, 55, 68
UPPAAL, 65

valuation function, 21, 68

97

